Pass The Happy! 🌌✨ When You Receive This, List 5 Things That Make You Happy And Send This To 10

Pass the happy! 🌌✨ When you receive this, list 5 things that make you happy and send this to 10 of the last people in your notifications!

1. Being reminded to think of happy things xD

2. Space (literally anything, you guys can tell how obsessed I am)

3. Writing Sci-Fi stories

4. Wearing a sweater on a cold day

5. Having lemon cookies to go with my coffee

Remember to all: especially in times like these, it’s nice to take a minute and think about the things that make you happy. They don’t have to be super obvious and sappy, like your family or your pet dog, they can be the little things that brighten your day. Like stars, and lemon cookies. Think about happy little things.

More Posts from Acosmicgeek and Others

4 years ago

Accurate

Even though it’s possible the apple thing never happened.

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

Thinking Intensifies

Thinking intensifies


Tags
4 years ago

Omg yes this is it - this is the unified theory of everything - Einstein was just a lion the whole time!

It does explain the hair though

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

The Physics Lion

The physics lion


Tags
4 years ago

For a star to be born, there is one thing that must happen: a gaseous nebula must collapse. So collapse. Crumble. This is not your destruction. This is your birth.

Zoe Skylar

image

(via the-wolf-and-moon)

Everything that is created comes from destruction, that’d just how our universe works.

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!


Tags
5 years ago

In a sense cosmology contains all subjects because it is the story of everything, including biology, psychology and human history.

Peter Theodore Landsberg

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG! 


Tags
4 years ago

Einstein ... thank.

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

Herr Einstein…

Herr Einstein…


Tags
4 years ago

Max Planck, you absolute boss

Btw there’s always something left in physics to discover. Going from nothing left to discover to quantum theory is a huge leap though, because quantum has PLENTY to figure out.

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

Oof

Oof


Tags
4 years ago

I kinda wanna print this and put it on my wall

goddamn space is too pretty

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

AE Aurigae

AE Aurigae


Tags
5 years ago

I love that

After my Life of Stars series I’ve been wanting to do one on galaxies. Maybe I will hmmmmm

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

Galaxies: Types and morphology

A galaxy is a gravitationally bound system of stars, stellar remnants, interstellar gas, dust, and dark matter. Galaxies range in size from dwarfs with just a few hundred million (108) stars to giants with one hundred trillion (1014) stars, each orbiting its galaxy’s center of mass.

image

Galaxies come in three main types: ellipticals, spirals, and irregulars. A slightly more extensive description of galaxy types based on their appearance is given by the Hubble sequence. 

image

Since the Hubble sequence is entirely based upon visual morphological type (shape), it may miss certain important characteristics of galaxies such as star formation rate in starburst galaxies and activity in the cores of active galaxies.

Ellipticals

image

The Hubble classification system rates elliptical galaxies on the basis of their ellipticity, ranging from E0, being nearly spherical, up to E7, which is highly elongated. These galaxies have an ellipsoidal profile, giving them an elliptical appearance regardless of the viewing angle. Their appearance shows little structure and they typically have relatively little interstellar matter. Consequently, these galaxies also have a low portion of open clusters and a reduced rate of new star formation. Instead they are dominated by generally older, more evolved stars that are orbiting the common center of gravity in random directions.

Spirals

image

Spiral galaxies resemble spiraling pinwheels. Though the stars and other visible material contained in such a galaxy lie mostly on a plane, the majority of mass in spiral galaxies exists in a roughly spherical halo of dark matter that extends beyond the visible component, as demonstrated by the universal rotation curve concept.

Spiral galaxies consist of a rotating disk of stars and interstellar medium, along with a central bulge of generally older stars. Extending outward from the bulge are relatively bright arms. In the Hubble classification scheme, spiral galaxies are listed as type S, followed by a letter (a, b, or c) that indicates the degree of tightness of the spiral arms and the size of the central bulge.

Barred spiral galaxy

image

A majority of spiral galaxies, including our own Milky Way galaxy, have a linear, bar-shaped band of stars that extends outward to either side of the core, then merges into the spiral arm structure. In the Hubble classification scheme, these are designated by an SB, followed by a lower-case letter (a, b or c) that indicates the form of the spiral arms (in the same manner as the categorization of normal spiral galaxies). 

Ring galaxy

image

A ring galaxy is a galaxy with a circle-like appearance. Hoag’s Object, discovered by Art Hoag in 1950, is an example of a ring galaxy. The ring contains many massive, relatively young blue stars, which are extremely bright. The central region contains relatively little luminous matter. Some astronomers believe that ring galaxies are formed when a smaller galaxy passes through the center of a larger galaxy. Because most of a galaxy consists of empty space, this “collision” rarely results in any actual collisions between stars.

Lenticular galaxy

image

A lenticular galaxy (denoted S0) is a type of galaxy intermediate between an elliptical (denoted E) and a spiral galaxy in galaxy morphological classification schemes. They contain large-scale discs but they do not have large-scale spiral arms. Lenticular galaxies are disc galaxies that have used up or lost most of their interstellar matter and therefore have very little ongoing star formation. They may, however, retain significant dust in their disks.

Irregular galaxy

image

An irregular galaxy is a galaxy that does not have a distinct regular shape, unlike a spiral or an elliptical galaxy. Irregular galaxies do not fall into any of the regular classes of the Hubble sequence, and they are often chaotic in appearance, with neither a nuclear bulge nor any trace of spiral arm structure.

Dwarf galaxy

image

Despite the prominence of large elliptical and spiral galaxies, most galaxies in the Universe are dwarf galaxies. These galaxies are relatively small when compared with other galactic formations, being about one hundredth the size of the Milky Way, containing only a few billion stars. Ultra-compact dwarf galaxies have recently been discovered that are only 100 parsecs across.

Interacting

image

Interactions between galaxies are relatively frequent, and they can play an important role in galactic evolution. Near misses between galaxies result in warping distortions due to tidal interactions, and may cause some exchange of gas and dust. Collisions occur when two galaxies pass directly through each other and have sufficient relative momentum not to merge.

Starburst

image

Stars are created within galaxies from a reserve of cold gas that forms into giant molecular clouds. Some galaxies have been observed to form stars at an exceptional rate, which is known as a starburst. If they continue to do so, then they would consume their reserve of gas in a time span less than the lifespan of the galaxy. Hence starburst activity usually lasts for only about ten million years, a relatively brief period in the history of a galaxy.

Active galaxy

A portion of the observable galaxies are classified as active galaxies if the galaxy contains an active galactic nucleus (AGN). A significant portion of the total energy output from the galaxy is emitted by the active galactic nucleus, instead of the stars, dust and interstellar medium of the galaxy.

image

The standard model for an active galactic nucleus is based upon an accretion disc that forms around a supermassive black hole (SMBH) at the core region of the galaxy. The radiation from an active galactic nucleus results from the gravitational energy of matter as it falls toward the black hole from the disc. In about 10% of these galaxies, a diametrically opposed pair of energetic jets ejects particles from the galaxy core at velocities close to the speed of light. The mechanism for producing these jets is not well understood.

image

The main known types are: Seyfert galaxies, quasars, Blazars, LINERS and Radio galaxy.

source

images: NASA/ESA, Hubble (via wikipedia)


Tags
4 years ago

True.

Iron actually takes more energy to fuse than it releases, so the inward pressure needed to keep the star from collapsing isn’t enough when it’s mainly fusing iron, and then it collapses.

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!

When Stars Die…….

When Stars Die…….


Tags
5 years ago
THE LIFE OF A STAR: CLASSIFICATION

THE LIFE OF A STAR: CLASSIFICATION

In order to understand the life of a star, we must understand star classification.

        And there are SO many different ways to classify a star.

        In star classification, understanding the relationship between color and temperature is crucial. The greater the temperature of the star, the bluer they are (at their hottest, around 50,000 degrees Celcius), while red stars are cooler (at their coolest, around 3,000 degrees Celcius). This occurs on a wide range (fun fact: stars only come in red, orange, yellow, white, and blue, because stars are approximately something called a "black body"). For example, our Sun is a yellow star with a surface temperature of 5,500 degrees Celcius (The Life of a Star).

        But why is this so? In order to understand that, I'm going to tell you about how stars live at all. This is what will determine the entire life of a star - something we'll be focusing on throughout this series. Two words: nuclear fusion.

        Nuclear fusion is "a reaction in which two or more atomic nuclei are combined to form one or more different atomic nuclei and subatomic particles (neutrons or protons). The difference in mass between the reactants and products is manifested as either the release or absorption of energy." (Wikipedia) And this is where nuclear fusion gets REALLY important to stars. Throughout their lives, stars undergo nuclear fusion in their core. This is mostly in the form of fusing two or more hydrogen atoms into one or more helium atoms. This releases energy in the form of light (the pressure of nuclear fusion in the core also prevents the star from collapsing under the weight of gravity, something we'll get to later). The energy transports to the surface of the star and then radiates at an "effective temperature." (Britannica) 

        Stars are different colors due to differing amounts of energy. This is best explained by Einstein's e=mc2 or the mass-energy equivalence. In other words, the more mass something has, the more energy, and vice versa. Stars with greater mass undergo more nuclear fusion - and as such - emit more energy/temperature. And so, the bigger the star, the greater the temperature, the bluer the star; and the smaller the star, the lower the temperature, the redder the star (Universe Today). Another way to think about this is this: the hotter something is, the shorter frequency of energy it emits. Blue light has a shorter frequency than red light, and so, higher energy/temperature stars are bluer.

        Another important classification of a star is its luminosity (or the brightness, or the magnitude of the star). (The Life of a Star)

        The most famous diagram classifying stars is the Herzsprung Russell Diagram, shown in this article's picture. The x-axis of the diagram shows surface temperature, hottest left, and coolest right. The y-axis shows brightness, brighter higher, and dimmer lower. There are main groups on the diagram. 

        Most stars fall in a long band stretching diagonally, starting in the upper left corner and ending in the right lower corner, this is called the main sequence. The main sequence shows stars which mostly use their life going through nuclear fusion. This process takes up most of a star's life. Most stars which are hotter and more luminous fall in the upper left corner of the main sequence and are blue in color. Most stars that have lower-masses are cooler, and redder falls in the lower right. Yellow stars like our Sun fall in the middle. 

         The group located in the lower-left corner are smaller, fainter, and bluer (hotter) and are called White Dwarfs. These stars are a result of a star like our Sun one day running out of Hydrogen.

          The group located right above the righter's main sequence is larger, cooler, brighter, and a more orange-red or red, are called Red Giants. They are also part of the dying process of a star like our sun. Above them in the upper right corner are Red Super Giants, massive, bright, cooler, and much more luminous. To the left of the Red Super Giants are similar stars which are just hotter and bluer and are called the Blue Super Giants.

        That explains the most famous star classifying diagram. The important thing to remember is the data on the chart is not what a star will be like it's whole life. A star's position on the chart will change like our Sun will one day do.

        In a ThoughtCo. article on the Hertzsprung Russell Diagram, Carolyn Collins Petersen wrote: "One thing to keep in mind is that the H-R diagram is not an evolutionary chart. At its heart, the diagram is simply a chart of stellar characteristics at a given time in their lives (and when we observed them). It can show us what stellar type a star can become, but it doesn't necessarily predict the changes in a star." ( The Hertzsprung-Russell Diagram and the Lives of Stars)

        And this will continue to be important in the next chapters. Stars don't just stay in the same position their entire lives: they change in their color, luminosity, and temperature. In this series, we'll be tracking how stars form, live and die - all dependent on these three factors - and nuclear fusion - again - super important :)

Previous -  Chapter 1: An Introduction

Next -  Chapter 3: Star Nurseries

WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!


Tags
  • acosmicgeek
    acosmicgeek reblogged this · 4 years ago
acosmicgeek - A COSMIC GEEK
A COSMIC GEEK

Get your head stuck in the stars.

101 posts

Explore Tumblr Blog
Search Through Tumblr Tags