As our planet warms, Earth’s ocean and atmosphere are changing.
Climate change has a lot of impact on the ocean, from sea level rise to marine heat waves to a loss of biodiversity. Meanwhile, greenhouse gases like carbon dioxide continue to warm our atmosphere.
NASA’s upcoming satellite, PACE, is soon to be on the case!
Set to launch on Feb. 6, 2024, the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission will help us better understand the complex systems driving the global changes that come with a warming climate.
While a single phytoplankton typically can’t be seen with the naked eye, communities of trillions of phytoplankton, called blooms, can be seen from space. Blooms often take on a greenish tinge due to the pigments that phytoplankton (similar to plants on land) use to make energy through photosynthesis.
In a 2023 study, scientists found that portions of the ocean had turned greener because there were more chlorophyll-carrying phytoplankton. PACE has a hyperspectral sensor, the Ocean Color Instrument (OCI), that will be able to discern subtle shifts in hue. This will allow scientists to monitor changes in phytoplankton communities and ocean health overall due to climate change.
With PACE, scientists will be able to tell what phytoplankton communities are present – from space! Before, this could only be done by analyzing a sample of seawater.
Telling “who’s who” in a phytoplankton bloom is key because different phytoplankton play vastly different roles in aquatic ecosystems. They can fuel the food chain and draw down carbon dioxide from the atmosphere to photosynthesize. Some phytoplankton populations capture carbon as they die and sink to the deep ocean; others release the gas back into the atmosphere as they decay near the surface.
Studying these teeny tiny critters from space will help scientists learn how and where phytoplankton are affected by climate change, and how changes in these communities may affect other creatures and ocean ecosystems.
The PACE mission will offer important insights on airborne particles of sea salt, smoke, human-made pollutants, and dust – collectively called aerosols – by observing how they interact with light.
With two instruments called polarimeters, SPEXone and HARP2, PACE will allow scientists to measure the size, composition, and abundance of these microscopic particles in our atmosphere. This information is crucial to figuring out how climate and air quality are changing.
PACE data will help scientists answer key climate questions, like how aerosols affect cloud formation or how ice clouds and liquid clouds differ.
It will also enable scientists to examine one of the trickiest components of climate change to model: how clouds and aerosols interact. Once PACE is operational, scientists can replace the estimates currently used to fill data gaps in climate models with measurements from the new satellite.
With a view of the whole planet every two days, PACE will track both microscopic organisms in the ocean and microscopic particles in the atmosphere. PACE’s unique view will help us learn more about the ways climate change is impacting our planet’s ocean and atmosphere.
Stay up to date on the NASA PACE blog, and make sure to follow us on Tumblr for your regular dose of sPACE!
"The Imperfect Angel Nebula", NGC 2170 // zombi
The brown dwarf W1935 is a bit of a mystery. Astronomers using the James Webb Space Telescope picked up glowing methane—a sign that the object’s upper atmosphere is being heated. But the brown dwarf has no host star, so where could the heat be coming from?
In our solar system, Jupiter and Saturn show methane emission due to the presence of auroras—what we call the Northern Lights on Earth. W1935 might also have auroras, which could be powered by energetic particles from a nearby, active moon, like Jupiter’s Io: https://webbtelescope.pub/4aKMkBF
The Bearclaw Nebula, Sh2-200 // Dionysus
What is casting dark shadows across 36,000 light-years of space in this Hubble Space Telescope image?
The mysterious dark rays appearing to emanate from galaxy IC 5063 have intrigued astronomers, and there are a few different ideas about what is causing them. They could be like the shadows of clouds when light from the setting Sun pierces through them.
Astronomers have traced the rays back to the galaxy’s core, the location of an active supermassive black hole. One idea suggests that the shadows are being cast into space by an inner tube-shaped ring, or torus, of dusty material surrounding the black hole.
Credit: NASA, ESA, and W.P. Maksym (CfA).
ALT TEXT: Rust-colored view of space, with a bright, narrow purple region at the center, a galaxy. Background stars and galaxies are scattered sparsely—this is a dusty rather than starry scene. To the upper left of the bright central region are dark dust lanes. Opposite these to the lower right, one dark area extends from the central bright region and splits into two dark rays. Similar dark rays can be seen to the top left, behind the dust lanes. The edges of the entire image are dark, fading from the colored center.
ESA's Gaia Mission has been mapping the Milky Way for over 10 years! Check out its greatest discoveries in this short video (~5 minutes).
So far, we think the sky will cooperate enough for us to see tomorrow's eclipse! We'll be handing out eclipse glasses around DMF tomorrow, and some other locations on campus from 10:30 am - 2:45 pm. Check back one more time in the morning about the weather.
The 2023 Annular Eclipse as seen from Albuquerque, NM // Jordan Martin
Rosette Nebula by space.by.jase
Young Stars, Stellar Jets via NASA https://ift.tt/mUE9hQK
STEM Education, Astrophysics Research, Astrophotography, and Outreach located at 24 Park Ave., Bridgewater MA. You'll find us on the two outdoor balconies on the 5th floor, and you'll find our official website here: https://www.bridgew.edu/center/case/observatory .
150 posts