Eagle Nebula
via reddit
Nebula Images: http://nebulaimages.com/
Astronomy articles: http://astronomyisawesome.com/
The NASA Aeronautics team is working to transform aviation by enabling a new commercial market for supersonic travel over land. The centerpiece of this effort is the X-59 QueSST (short for Quiet SuperSonic Technology), a new X-plane designed to produce sonic "thumps" that could open the door to new certification standards for commercial supersonic service. NASA and Lockheed Martin are working together to design and build the X-59. Beginning in 2023, NASA will use this X-plane to measure public response to sonic thumps.
More at www.nasa.gov/lowboom
NASA Administrator Charles Bolden, right, and Langley Research Center Director, Dr. David E. Bowles, left, poses for a photo with staff dressed in space suits on Langley Research Center's Centennial float on Thursday, Dec. 1, 2016, at Langley Research Center in Hampton, VA.
Photo Credit: NASA Langley Research Center
February 12, 1969 (5 months, 4 days before the launch of the Apollo 11 Spacecraft)
@nasa @nasahistory
Sam McDonald NASA Langley Research Center
A new display at the Hampton History Museum offers another view of African-American women whose mathematical skills helped the nation’s early space program soar.
“When the Computer Wore a Skirt: NASA’s Human Computers” opens to the public Saturday, Jan. 21, and focuses on three women — Dorothy Vaughan, Mary Jackson and Katherine Johnson — who were illuminated in Margot Lee Shetterly’s book “Hidden Figures” and the major motion picture of the same name. Located in the museum's 20th century gallery, it was created with support from the Hampton Convention and Visitor Bureau and assistance from NASA's Langley Research Center.
“Langley’s West Computers were helping America dominate aeronautics, space research, and computer technology, carving out a place for themselves as female mathematicians who were also black, black mathematicians who were also female,” Shetterly wrote.
The modestly sized exhibit is comprised of four panels with photos and text along with one display case containing artifacts, including a 1957 model Friden mechanical calculator. That piece of equipment represented state-of-the-art technology when then original human computers were crunching numbers. A three-minute video profiling Johnson —a Presidential Medal of Freedom winner — is also part of the exhibit.
A display case at left contains a 1957 Friden STW-10 mechanical calculator, the type used by NASA human computers including Katherine Johnson. "If you were doing complicated computations during that time, this is what you used," said Hampton History Museum Curator Allen Hoilman. The machine weighs 40 pounds.
Credits: NASA/David C. Bowman
Museum curator Allen Hoilman said his favorite artifact is a May 5, 1958 memo from Associate Director Floyd Thompson dissolving the West Area Computers Unit and reassigning its staff members to other jobs around the center.
“It meant that the segregated work environment was coming to an end,” Hoilman said. “That’s why this is a significant document. It’s one of the bookends.”
That document, along with several others, was loaned to the museum by Ann Vaughan Hammond, daughter of Dorothy Vaughan. Hoilman said family members of other human computers have been contacted about contributing artifacts as well.
Ann Vaughan Hammond worked hard to find meaningful items for the display. “She really had to do some digging through the family papers,” Hoilman said, explaining that the women who worked as human computers were typically humble about their contributions. They didn’t save many mementos.
“They never would have guessed they would be movie stars,” Hoilman said.
For more information on Katherine Johnson, click here.
Credits:
Sam McDonald NASA Langley Research Center
Picnics, parades and fireworks are the attributes of a grand July Fourth celebration. So are the itch and scratch of mosquito bites. While the bites are annoying, they don't tend to stop the festivities. However, certain types of mosquitoes can cause serious harm. They are known to carry and spread diseases like Zika, West Nile Virus and malaria.
One of the tools researchers are using to track these mosquitos is citizen science data combining with NASA Earth satellite observations to create new forecast models that can predict the spread of mosquito-carrying diseases, but more data are needed to improve models that can predict and track mosquito-borne diseases.
“We do not have enough information on the geographic distribution of mosquito and time-variation in their populations. If a lot of people participated in this citizen science initiative worldwide, it will help fill in gaps and that would help our work,” said Assaf Anyamba, a scientist from Universities Space Research Association using satellite data to study mosquitoes at NASA's Goddard Space Flight Center in Greenbelt, Maryland.
From fall 2017 to spring 2018, two NASA DEVELOP teams at Goddard studied Western Europe, a place not typically known for mosquito disease outbreaks. DEVELOP, part of NASA’s Applied Sciences Program, addresses environmental and public policy issues through interdisciplinary research projects that apply the lens of NASA Earth observations to community concerns around the globe. The Global Mosquito Alert Consortium supplied the DEVELOP teams with citizen science data.
The teams blended the citizen science data with NASA satellite observations of land surface temperatures, humidity, soil moisture, elevation, vegetation and precipitation. The data were then used to create an interactive, open-source map on Google Earth Engine to improve prediction models for disease-carrying mosquitoes. The work is ongoing.
Early results showed that vegetation, humidity and soil moisture made it easier for mosquitoes to thrive during the summer months. During the winter, elevation played a stronger role in creating mosquito-friendly habitats. The lower the altitude, the higher the number of mosquitoes. One challenge with the study was that the citizen science data was concentrated in populated areas; and as a result, it was skewing some of the mosquito results,” said Sara Lubkin, DEVELOP project coordination fellow at Goddard.
More citizen science data from more areas of the world could help.
“Knowing the mosquito species and their approximate populations at a given time provides useful information on the potential of occurrence of a particular pathogen, or disease transmission,” said Anyamba.
Different environmental conditions are suitable for certain types of disease-carrying mosquitoes.
Every summer, hot, humid conditions drive up mosquito populations. Since there are plenty of wet areas to live and breed, mosquitoes tend to stay in one area. However, when conditions become hot and dry, mosquitoes migrate to more suitable habitats.
Satellites can detect how wet or how dry an area is, and that information helps determine what types of mosquitoes and disease can move through an environment.
The last significant West Nile outbreak in the United States occurred in 2011, which was a dry year. The hot, dry season led mosquitoes to move into highly urbanized and populated areas seeking food and water.
Warmer temperatures excite some mosquito species, causing them to bite more people. Also, certain high temperature thresholds can reduce the amount of time it takes for mosquitoes to mature from larvae to adults leading to doubling mosquito populations over an average year.
Mosquitoes cannot travel far on their own. Instead, they have to hitch a ride on people and animals to travel any significant distance. If a mosquito is a type that carries and spreads diseases, then the disease can move into new areas, as occurred in Western Europe.
The public can help track mosquitoes by downloading an app called GLOBE Observer, and then collect data over the summer using the Mosquito Habitat Mapper tool in the app. The app guides users through the process of identifying and eliminating mosquito breeding sites in order to reduce mosquito populations in their local area.
Related links:
An Interactive Model of Mosquito Presence and Distribution to Assist Vector-Borne Disease Management in Western Europe
A new report from the National Center for Atmospheric Research evaluates the risk to 50 U.S. cities from the Aedes aegypti mosquito, which carries Zika.
Global Mosquito Alert Consortium
NASA Citizen Science App Tackles Mosquito-Borne Disease
By Rani Gran NASA's Goddard Space Flight Center, Greenbelt, Md.
Orion was making waves at @nasalangley this week
We’re getting ready to start our next mission to find new worlds! The Transiting Exoplanet Survey Satellite (TESS) will find thousands of planets beyond our solar system for us to study in more detail. It’s preparing to launch from our Kennedy Space Center at Cape Canaveral in Florida.
Once it launches, TESS will look for new planets that orbit bright stars relatively close to Earth. We’re expecting to find giant planets, like Jupiter, but we’re also predicting we’ll find Earth-sized planets. Most of those planets will be within 300 light-years of Earth, which will make follow-up studies easier for other observatories.
TESS will find these new exoplanets by looking for their transits. A transit is a temporary dip in a star’s brightness that happens with predictable timing when a planet crosses between us and the star. The information we get from transits can tell us about the size of the planet relative to the size of its star. We’ve found nearly 3,000 planets using the transit method, many with our Kepler space telescope. That’s over 75% of all the exoplanets we’ve found so far!
TESS will look at nearly the entire sky (about 85%) over two years. The mission divides the sky into 26 sectors. TESS will look at 13 of them in the southern sky during its first year before scanning the northern sky the year after.
What makes TESS different from the other planet-hunting missions that have come before it? The Kepler mission (yellow) looked continually at one small patch of sky, spotting dim stars and their planets that are between 300 and 3,000 light-years away. TESS (blue) will look at almost the whole sky in sections, finding bright stars and their planets that are between 30 and 300 light-years away.
TESS will also have a brand new kind of orbit (visualized below). Once it reaches its final trajectory, TESS will finish one pass around Earth every 13.7 days (blue), which is half the time it takes for the Moon (gray) to orbit. This position maximizes the amount of time TESS can stare at each sector, and the satellite will transmit its data back to us each time its orbit takes it closest to Earth (orange).
Kepler’s goal was to figure out how common Earth-size planets might be. TESS’s mission is to find exoplanets around bright, nearby stars so future missions, like our James Webb Space Telescope, and ground-based observatories can learn what they’re made of and potentially even study their atmospheres. TESS will provide a catalog of thousands of new subjects for us to learn about and explore.
The TESS mission is led by MIT and came together with the help of many different partners. Learn more about TESS and how it will further our knowledge of exoplanets, or check out some more awesome images and videos of the spacecraft. And stay tuned for more exciting TESS news as the spacecraft launches!
Join mission experts to learn more about TESS, how it will search for worlds beyond our solar system and what scientists hope to find! Have questions? Use #askNASA to have them answered live during the broadcast.
Get an update on the spacecraft, the rocket and the liftoff operations ahead of the April 16 launch! Have questions? Use #askNASA to have them answered live during the broadcast.
Hear from mission scientists and experts about the science behind the TESS mission. Have questions? Use #askNASA to have them answered live during the broadcast.
This live show will dive into the science behind the TESS spacecraft, explain how we search for planets outside our solar system and will allow you to ask your questions to members of the TESS team.
This half-hour live show will discuss the TESS spacecraft, the science of searching for planets outside our solar system, and the launch from Cape Canaveral.
Join us live on Reddit for a Science AMA to discuss the hunt for exoplanets and the upcoming launch of TESS!
TESS is slated to launch at 6:32 p.m. EDT on a SpaceX Falcon 9 rocket from our Kennedy Space Center in Florida.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Today (4/06), we celebrate the special radio frequency transmitted by emergency beacons to the international search and rescue network.
This 406 MHz frequency, used only for search and rescue, can be “heard” by satellites hundreds of miles above the ground! The satellites then “forward” the location of the beacon back to Earth, helping first responders locate people in distress worldwide, whether from a plane crash, a boating accident or other emergencies.
Our Search and Rescue office, based out of our Goddard Space Flight Center, researches and develops emergency beacon technology, passing the technology to companies who manufacture the beacons, making them available to the public at retail stores. The beacons are designed for personal, maritime and aviation use.
The search and rescue network, Cospas-Sarsat, is an international program that ensures the compatibility of distress alert services with the needs of users. Its current space segment relies on instruments onboard low-Earth and geosynchronous orbiting satellites, hundreds to thousands of miles above us.
Space instruments forward distress signals to the search and rescue ground segment, which is operated by partner organizations around the world! They manage specific regions of the ground network. For example, the National Oceanic and Atmospheric Administration (NOAA) operates the region containing the United States, which reaches across the Atlantic and Pacific Oceans as well as parts of Central and South America.
NOAA notifies organizations that coordinate search and rescue efforts of a 406 MHz distress beacon’s activation and location. Within the U.S., the U.S. Air Force responds to land-based emergencies and the U.S. Coast Guard responds to water-based emergencies. Local public service organizations like police and fire departments, as well as civilian volunteers, serve as first responders.
Here at NASA, we research, design and test search and rescue instruments and beacons to refine the existing network. Aeronautical beacon tests took place at our Langley Research Center in 2015. Using a 240-foot-high structure originally used to test Apollo spacecraft, our Search and Rescue team crashed three planes to test the survivability of these beacons, developing guidelines for manufacturers and installation into aircraft.
In the future, first responders will rely on a new constellation of search and rescue instruments on GPS systems on satellites in medium-Earth orbit, not hundreds, but THOUSANDS of miles overhead. These new instruments will enable the search and rescue network to locate a distress signal more quickly than the current system and achieve accuracy an order of magnitude better, from a half mile to approximately 300 feet. Our Search and Rescue office is developing second-generation 406 MHz beacons that make full use of this new system.
We will also incorporate these second-generation beacons into the Orion Crew Survival System. The Advanced Next-Generation Emergency Locator (ANGEL) beacons will be attached to astronaut life preservers. After splashdown, if the Orion crew exits the capsule due to an emergency, these beacons will make sure we know the exact location of floating astronauts! Our Johnson Space Center is testing this technology for used in future human spaceflight and exploration missions.
If you’re the owner of an emergency beacon, remember that beacon registration is free, easy and required by law.
To register your beacon, visit: beaconregistration.noaa.gov
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Maybe NASA Astronomer, @michellethaller , can spread some ‘light’ on this topic. She has spent years studying binary star systems!
Isn’t it beautiful two suns setting over the horizon.