Earlier this year, we hosted a Game Changing Technology Industry Day for the aerospace industry, and in October our engineers and technologists visited Capitol Hill showcasing some of these exciting innovations. Check out these technology developments that could soon be making waves on Earth and in space.
With smartwatches, glasses, and headsets already captivating users around the world, it’s no surprise that the next evolution of wearable technology could be used by first responders at the scene of an accident or by soldiers on a battlefield. The Integrated Display and Environmental Awareness System (IDEAS) is an interactive optical computer that works for smart glasses.
It has a transparent display, so users have an unobstructed view even during video conferences or while visualizing environmental data.
And while the IDEAS prototype is an innovative solution to the challenges of in-space missions, it won’t just benefit astronauts – this technology can be applied to countless fields here on Earth.
Before astronauts can venture to Mars and beyond, we need to significantly upgrade our life support systems. The Next Generation Life Support project is developing technologies to allow astronauts to safely carry out longer duration missions beyond low-Earth orbit.
The Variable Oxygen Regulator will improve the control of space suit pressure, with features for preventing decompression sickness. The Rapid Cycle Amine technology will remove carbon dioxide and humidity and greatly improve upon today’s current complex system.
New Advanced Manufacturing Technologies (AMT), such as 3-D printing, can help us build rocket parts more quickly and aid in building habitats on other planets.
These manufacturing initiatives will result in innovative, cost-efficient solutions to many of our planetary missions. Back in 2014, the International Space Station’s 3-D printer manufactured the first 3-D printed object in space, paving the way to future long-term space expeditions.
The object, a printhead faceplate, is engraved with names of the organizations that collaborated on this space station technology demonstration: NASA and Made In Space, Inc., the space manufacturing company that worked with us to design, build and test the 3-D printer.
Large spacecraft entering the atmosphere of Mars will be traveling over five times the speed of sound, exposing the craft to extreme heat and drag forces. The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is designed to protect spacecraft from this environment with an inflatable structure that helps slow a craft for landing.
To get astronauts and other heavy loads to the surface safely, these components must be very strong. The inflatable consists of a material 15 times stronger than steel, while the thermal protection system can withstand temperatures over 1600°C.
For the Convective Heating Improvement for Emergency Fire Shelters (CHIEFS) project, we partnered with the U.S. Forest Service to develop safer, more effective emergency fire shelters for wild land firefighters.
Using existing technology for flexible spacecraft heat shields like HIAD, we are building and testing new fire shelters composed of stacks of durable, insulated materials that could help protect the lives of firefighters.
Real life is looking a bit more like science fiction as Human Robotics Systems are becoming highly complex. They are amplifying human productivity and reducing mission risk by improving the effectiveness of human-robot teams.
Our humanoid assistant Robonaut is currently aboard the International Space Station helping astronauts perform tasks.
A fleet of robotic spacecraft and rovers already on and around Mars is dramatically increasing our knowledge and paving the way for future human explorers. The Mars Science Laboratory Curiosity rover measured radiation on the way to Mars and is sending back data from the surface.
This data will help us plan how to protect the astronauts who will explore Mars.
Future missions like the Mars 2020 rover, seeking signs of past life, will demonstrate new technologies that could help astronauts survive on the Red Planet.
Currently, a satellite that is even partially damaged cannot be fixed in orbit. Instead, it must be disposed of, which is a lot of potential science lost.
Satellite Servicing technologies would make it possible to repair, upgrade, and even assemble spacecraft in orbit using robotics.
This can extend the lifespan of a mission, and also enable deeper space exploration.
Restore-L, set to launch in 2020, is a mission that will demonstrate the ability to grab and refuel a satellite.
Small satellites, or smallsats, are quickly becoming useful tools for both scientists and industry. However, the high cost of spacecraft avionics—the systems that guide and control the craft—often limits how and when smallsats can be sent into orbit by tagging along as payloads on larger launches.
Using Affordable Vehicle Avionics (AVA) technology, we could launch many more small satellites using an inexpensive avionics controller. This device is smaller than a stack of six CD cases and weighs less than two pounds!
After a JPL research team of modern-day alchemists set about mixing their own alloys, they discovered that a glass made of metal had the wear resistance of a ceramic, was twice as strong as titanium, and could withstand the extreme cold of planetary surfaces, with temperatures below -150 degrees Fahrenheit.
Bulk Metallic Glass (BMG) gears would enable mechanisms to function without wasting energy on heaters. Most machines need to maintain a warmer temperature to run smoothly, which expends precious fuel and decreases the mission’s science return.
By developing gearboxes made of BMG alloys, we can extend the life of a spacecraft and learn more about the far reaches of our solar system than ever before. Plus, given their extremely high melting points, metallic glasses can be cheaply manufactured into parts by injection molding, just like plastics.
Cryogenic propellant tanks are essential for holding fuel for launch vehicles like our Space Launch System—the world’s most powerful rocket. But the current method for building these tanks is costly and time-consuming, involving almost a mile of welded parts.
Advanced Near Net Shape Technology, part of our Advanced Manufacturing Technologies, is an innovative manufacturing process for constructing cryotanks, using cylinders that only have welds in one area.
This makes the tank lighter, cheaper, and safer for astronauts, as there are fewer potentially defective welds.
Follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
CONSUME
powerful
M
@voz-vox I Will End You
here are some fundraisers i found to help people in countries who are going through hurricane irma (reply to the post if you know any other donation links i can add):
Help St Thomas
Hurricane Irma Medical Relief Fund
Hurricane Irma Evacuation Fund
Hurricane Irma Disaster Relief
Rescue The Rescue… Help HPR Prepare For Irma!
HeadKnowles’ Hurricane Irma Relief [JoaquinMatthew]
St. Croix Hurricane Irma Recovery
HELP US RAISE MONEY TO PREPARE FOR HURRICANE IRMA
Skydivers Irma Relief Drive
Irma Support For Black Communities in Miami & South Florida
Fair Antigua and Barbuda! We thy sons and daughters stand!
Puerto Rico Hurricane Relief Fund
Hurricane Irma
Hurricane Harvey Disaster Relief
Hurricane IRMA Emergency Relief Fund
Hurricane Irma Transportation Relief
Hurricane Irma Relief Fund
Hurricane Irma Relief Fund
Hurricane Irma Relief Fund: Help St Martin St Maarten
Hurricane IRMA SKN Rural Communities Relief Fund
Hurricane Irma SAVE THE PETS
Hurricane Irma Relief Fund
Food Bank in DR (Hurricane Irma)
Hurricane Irma Relief for St. John
Hurricane Irma K-9 Team relief
This actually sounds hilarious
Coexist
The truth is out there.
JAUNARY 31ST IS ABOUT TO BE THE COOLEST FUCKING LUNAR EVENT OF 2018
NOT ONLY IS IT A SUPERMOON, BUT IT’S ALSO THE SECOND FULL MOON IN JANUARY, MAKING IT A BLUE MOON
A N D
THERE’S A TOTAL LUNAR ECLIPSE!!!!!
when will any pop star ever go as hard as everybody knows shit fuck man