Antimatter if you mattered then you would cancel out xD
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
Anitimatter matters!
Looks like I’m getting a new wallpaper
It’s so beautiful ;(
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
Sunset in the Kananaskis Valley, Alberta. [2853 x 3566] [oc] - Author: ProjectOxide on reddit
This isn’t family friendly but its darn funny xD
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
They haven’t figured it out
That’s epic :o
Kennedy Space Center reopens on May 28th and I begged my parents to go but they don’t want to xD
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
The first West Coast SpaceX launch captured by photographer Dylan Schwartz.
Yeah, Mercury did kinda kick Newton in the balls, didn’t it?
Guess that’s why it’s my favorite planet
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
Ah yes, the science
THE LIFE OF A STAR: THE END (BUT NOT REALLY)
In our last chapter, we discussed the main-sequence stage of a star. In this chapter, we'll be discussing when the main-sequence stage ends, and what happens when it does.
In order to live, stars are required to maintain a hydrostatic equilibrium - which is the balance between the gravitational force and the gas pressure produced from nuclear fusion within the core. If gravity were to be stronger than this pressure, the star would collapse. Likewise, if the pressure were to be stronger than gravity, the star would explode. It's the balance - the equilibrium - between these two forces which keeps a star stable. Stars contain hydrogen - their primary fuel for fusion - in their core, shell, and envelope. The heat and density in the core is the only area in a main-sequence star that has enough pressure to undergo fusion. However, what happens once hydrogen runs out in the core is where things start to get ... explosive.
For this, we'll be having two discussions: what happens in low-mass stars, versus what happens in high-mass stars.
~ Low-Mass Stars ~
Low-mass stars are classified as those less than 1.4 times the mass of the sun (NASA). While low-mass stars last a lot longer than their higher-mass counterparts, these stars will eventually have fused all of the hydrogens in their core. Because the core doesn't have enough pressure to fuse helium (as it takes more pressure and heat to fuse heavier elements than less), gas pressure stops and gravity causes the core to contract. This converts gravitational potential energy into thermal energy, which heats up the hydrogen shell until it is hot enough to begin fusing. It also produces extra energy, which overcomes gravity in small amounts and causes the star to swell up a bit. As it expands, the pressure lessens and it cools. The increased energy also causes an increase in luminosity. This is what is now called a Red Giant star (ATNF).
Red Giants grow a lot, averagely reaching sizes of 100 million to 1 billion kilometers in diameter, which is 100-1,000 times larger than the sun. The growth of the star causes energy to be more spread out, and so cools it down to only around 3,000 degrees Celsius (still though, pretty hot). Because energy correlates with heat, and the red part of the electromagnetic spectrum is less energized, the stars glow a reddish color. Hence, the name Red Giant. Due to the current size of the sun, we can conclude that it will eventually become a Red Giant. This could be a big problem (literally), as the sun will grow so large that it will either consume Earth or become so close that it would be too hot to live. However, this won't be happening for around 5 billion years, so there's nothing immediately to worry about (Space.com).
As more hydrogen is fused within the shell of the Red Giant, the produced helium falls down into the core. The increased mass leads to increased pressure, which leads to increased heat. Once the temperature in the core reaches 100 K (at which point the helium produced has enough energy to overcome repulsive forces), helium begins to fuse. This process is called the Triple Alpha Process (as the helium being fused are actually alpha particles, helium-4 nuclei), where three of the helium particles combine to form carbon-12, and sometimes a fourth fuses along to form oxygen-16. Both processes release a gamma-ray photon. In low-mass stars, the Triple Alpha Process spreads so quickly that the entire helium ore is fusing in mere minutes or hours. This is, accurately called, the Helium Flash.
After millions of years, the helium in the core will run out. Now the core is made entirely of the products of helium fusion: carbon and oxygen nuclei. As the fusion stops, gas pressure shrinks, and gravity causes the star to contract yet again. The temperature needed to fuse carbon and oxygen is even higher, as heavier elements require more energy to fuse (because, with more protons, there's more Coulombic Repulsion). However, this temperature cannot be reached, because the gravity acting on the core is not strong enough to create enough heat. The core can burn no longer.
The helium shell of the star begins to fuse, as gravity IS strong enough to do that. The extra energy and gas pressure created causes the star to expand even more so now. The helium shell is not dense enough to cause one single helium flash, so small flashes occur every 10,000-100,000 years (due to the energy released, this is called a thermal pulse). Radiation pressure blows away most of the outer layer of the star, which gravity is not strong enough to contain. The carbon-rich molecules form a cloud of dust which expands and cools, re-emitting light from the star at a longer wavelength (ATNF).
But what happens after the shell is fused? We'll get back to that in Chapter 7, where we'll discuss White Dwarfs and Planetary Nebulae.
It's also important to note that not every low-mass star needs to become a Red Giant. Stars that are smaller than half the mass of the Sun (like, Red Dwarfs) are fully convective, meaning that the surface, envelope, shell, and core of star materials all mix. Because of this mixing, there is no helium buildup in the core. This means that there is not enough pressure to fuse the helium in fully convective stars, and so they skip the contraction and expansion phases of Red Giant Stars. Instead, with no gas pressure to counteract gravity, the star collapses in on itself and forms a White Dwarf (Cosmos).
~ High-Mass Stars ~
High-mass stars are classified as those more than 1.4 times the mass of the sun (NASA). High-Mass Stars, as opposed to their Low-Mass counterparts, use up their hydrogen fast, and as such have much shorter lives. Just like Low-Mass Stars, they'll eventually run out of hydrogen in both their core and their shell, and this will cause the star to contract. Their density and pressure will become so strong that the core becomes extremely hot, and helium fusion starts quickly (there is no helium flash because the process of fusion will begin slowly, rather than in "a flash"). The release of energy will cause it to expand and cool into a Red Supergiant, and will also begin the fusion of the helium shell.
Once all of the helium is gone, leaving carbon and oxygen nuclei, the star contracts yet again. The mass (and the gravity squeezing it into a very small space with a very large density) of a high-mass star will be enough to generate the temperatures needed for carbon fusion. This produces sodium, neon, and magnesium. The neon can also fuse with helium (whose nuclei is released in the neon fusion) to create magnesium. Once the core runs out of neon, oxygen fuses. This process keeps going, creating heavier and heavier elements, until it stops at iron. At this point, the supergiant star resembles an onion. It is layered: with the heavier elements being deeper within the star, and the lighter elements closer to the surface (ATNF).
But what happens after the star finally gets to iron? We'll get back to that in Chapters 8, 9, and 10 - where we'll discuss Supernovae, Neutron Stars, and Black Holes.
We’re nearing the end of our star’s life, and now it’s time to look into the many ways it can go out.
If our first five chapters were all about life, these next five will be all about death.
First - Chapter 1: An Introduction
Previous - Chapter 5: A Day in the Life
Next - Chapter 7: What Goes Around, Comes Around
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
For a star to be born, there is one thing that must happen: a gaseous nebula must collapse. So collapse. Crumble. This is not your destruction. This is your birth.
Zoe Skylar
(via the-wolf-and-moon)
Everything that is created comes from destruction, that’d just how our universe works.
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
I mean, that is true. Atoms would really like communism (aside from Noble gases, of course).
Fluorine be like SHARING IS CARING
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
Hydrogen bond vibes
Omg that’s hilarious xD
Cuz the way the second equation is written assumes that the c^2 in the mass-energy equivalence equation is actually the c^2 from the Pythagorean Theorem when it’s actually just the speed of light (squared, since c IS the speed of light).
I do love the Pythagorean Theorem though, even though (don’t come after me) I prefer the version where you take the square root of both sides so it’s c = sqrt(a^2 + b^2). It’s just easier!
Nerd rant, over.
(Also, can you imagine Einstein, Hawking, and Neil being friends!? It’s like my dream come true)
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!
Genius?
THE LIFE OF A STAR: A STAR IS BORN
All you need to make a star is dust, gravity, and time.
Stars form from nebulae's molecular clouds - which are "clumpy, with regions containing a wide range of densities—from a few tens of molecules (mostly hydrogen) per cubic centimetre to more than one million." Stars are only made in the densest regions - cloud cores - and larger cloud cores create more massive stars. Stars also form in associations in these cores. Cores with higher percentages of mass used only for star formation will have more stars bound together, while lower percentages will have stars drifting apart.
These cloud cores rotate very slowly and its mass is highly concentrated in its center - while also spinning and flattening into a disk (Britannica: Star Formation). This concentration is caused by gravity. As the mass of the clump increases - it is very cold and close to absolute zero, which increases density and causes atoms to bind together into molecules such as CO and H2 - it's gravity increases and at a certain point, it will collapse under it (Uoregon). The pressure, spinning, and compressing create kinetic energy which continues to heat the gas and increase density.
Finally, there's the last ingredient: time. The process of these molecular clouds clumping, spinning, concentrating, and collapsing takes quite a while. From start (the cloud core-forming) to finish (the birth of a main-sequence star) - the average time is at about a cool 10 million years (yikes). Of course, this differs with density and mass, but this is the time for a typical solar-type star (StackExchange).
The next stage in a star's life - after the nebulae - is a protostar.
After one clump separates from the cloud core, it develops its own identity and gravity, and loose gas falls into the center. This releases more kinetic energy and heats the gas, as well as the pressure. This clump will collapse under gravity, grow in density in the center. and trap infrared light inside (causing it to become opaque) (Uoregon).
A protostar looks like a normal star - emitting light - but it's just a baby star. Protostars' cores are not hot enough to undergo nuclear fusion and the light they emit (instead of coming from the release of photons after the fusion of atoms) comes from the heat of the protostar as it contracts under gravity. By the time this is formed, the spinning and gravity have flattened the dust and gas into a protostellar disk. The rotation also generates a magnetic field - which generates a protostellar wind - and sometimes even streams or jets of gas into space (LCO).
This protostar, which is not much bigger than Jupiter, continues to grow by taking in more dust and gas. The light emitted absorbs dust and is remitted over and over again, resulting in a shift to longer wavelengths and causing the protostar to emit infrared light. The growth of the star is halted as jets of material stream out from the poles - the cause of this has been unidentified, although theories suggest that strong magnetic fields and rotation "act as whirling rotary blades to fling out the nearby gas." (Britannica: Star Formation)
The "infall" of stars stops by pressure, and the protostar becomes more stable. Eventually, the temperature grows so hot (a few million kelvins) that thermonuclear fusion begins - usually in the form of deuterium (a heavier form of hydrogen), lithium, beryllium, and boron - which radiates light and energy. This starts the pre-main-sequence star phase - also called T Tauri stars - which includes lots of surface activity in the form of flares, stellar winds, opaque circumstellar disks, and stellar jets. In this phase, the star begins to contract - it can lose almost 50% of its mass - and the more massive the star, the shorter the T Tauri phase (Uoregon).
Eventually, when the star's core becomes hot enough (in some cases, we'll touch on this later), it will begin to fuse hydrogen. This will produce "an outward pressure that balances with the inward pressure caused by gravity, stabilizing the star." (Space.com)
This will either create an average-sized star or a massive star.
Nuclear fusion marks the beginning of the main sequence star. A star is born.
But it isn't always.
Now that we've discussed the transition from nebulae to main-sequence star, we'll be talking about what happens when hydrogen fusion doesn't occur. Those are called Brown Dwarfs.
Brown Dwarfs are those stars that form much too small - less than 0.08 the sun's mass - and as a result, they cannot undergo hydrogen fusion (Space.com).
Brown Dwarfs, are, bigger than planets. They are roughly between the size of Jupiter and our sun. Like protostars, brown dwarfs start by fusing deuterium, and their cores contract and increase in heat as they do so. Brown Dwarfs, however, cannot contract to the size required to heat the core enough to fuse hydrogen. Their cores are dense enough to hold themselves up with pressure. They are much colder compared to main-sequence stars, ranging from 2,800 K to 300 K (the sun is 5,800 K). They are called "Brown Dwarfs" because objects below 2,200 often cold too much and develop minerals in their atmosphere, turning a brown-red color (Britannica: Brown Dwarf).
Once Brown Dwarfs have fused all of their deuterium, they glow infrared, and the force of gravity overcomes internal pressure (the internal force of nuclear fusion used to keep it stable) as it slowly collapses. They eventually cool down and become dark balls of gas - black dwarfs (NRAO).
Now that we've covered how stars form - and what happens in certain cases where they are not - we'll be moving to the actual life of a star. Before we talk about the end of a star's life (arguably - my favorite part) we need to discuss main-sequence, cycles, mass, heat, pressure, structure, and more. This is to understand how a star died the way it did.
Because - when it comes to the menu of star death - stars have a few options to choose from.
First - Chapter 1: An Introduction
Previous - Chapter 3: Star Nurseries
Next - Chapter 5: A Day in the Life
WANT MORE? GET YOUR HEAD STUCK IN THE STARS AT MY BLOG!