What’s In Store For 2017 At NASA?

What’s in Store for 2017 at NASA?

With 2016 behind us, we take the time to not only reflect on what we’ve accomplished, but also take a look to what’s ahead for the next year.

Here are a few things to look forward to in 2017… 

New Telescope in Town

This year marked big progress on our James Webb Space Telescope and there are still a number of large milestones before the telescope is launched in 2018. Once launched, JWST will be the premier observatory of the next decade. It will study every phase in the history of our Universe, ranging from the first luminous glows after the Big Bang, to the formation of solar systems capable of supporting life on planets like Earth, to the evolution of our own solar system.

image

In 2017, the telescope will be shipped to our Johnson Space Center in Houston, Texas where end-to-end optical testing in a simulated cryo-temperature and vacuum space environment will occur.

Epic Final Year at Saturn

After more than 12 years studying Saturn, its rings and moons, our Cassini spacecraft is in its final year of its epic voyage. The conclusion of the historic scientific odyssey is planned for September 2017, but not before the spacecraft completes a daring two-part endgame.

image

Cassini’s final phase – called the Grand Finale – begins in earnest in April 2017. During this time, Cassini will make the closest-ever observations of Saturn, mapping the planet’s magnetic and gravity fields with exquisite precision and returning ultra-close views of the atmosphere.

Delivering Supplies to Space

Our ambitious commercial space program has enabled a successful partnership with two American companies to resupply the International Space Station. 

image

The companies are successfully resupplying the space station, and more missions to deliver scientific investigations and cargo are planned for 2017.  

Launching Two Earth Missions

New Earth science missions got underway in 2016 to enable studies that will unravel the complexities of our planet from the highest reaches of Earth’s atmosphere to its core. In 2017, we will launch two Earth-observing instruments to the International Space Station as part of our ongoing use of the orbiting space laboratory to study our changing planet.

image

The Stratospheric Aerosol and Gas Experiment III (SAGE III) will give us a new way to monitor Earth’s protective ozone layer and document its ongoing recovery. The Lightning Imaging Sensor (LIS) will measure both in-cloud and cloud-to-ground lightning over much of the planet, data that will help improve our understanding of lightning’s connections to weather and related phenomena.

Commercial Crew

Our Commercial Crew Program is working with American aerospace industry as companies develop and operate a new generation of spacecraft and launch systems capable of carrying crews to low-Earth orbit and the International Space Station.

image

In 2017, astronauts will train for commercial flights and launch pad 39A will be completed at Kennedy Space Center in Florida. Work is wrapping up on a new structure built specifically for the needs of astronauts climbing into Boeing's CST-100 Starliner as it stands atop a United Launch Alliance Atlas V rocket at Space Launch Complex 41 in Florida. In 2017, the 200-foot-tall Crew Access Tower and Crew Access Arm will see installation and testing of emergency evacuation systems. 

image

SpaceX has also overhauled the historic Launch Pad 39A at Kennedy and built new support structures for the company's line of Falcon rockets. The Crew Access Arm, currently under construction, will be connected in mid-2017 to provide a bridge from the fixed service structure to the Crew Dragon spacecraft so astronauts can board before launch

Orion Progress

Our Orion spacecraft is being built to take humans farther than they’ve ever gone before. Orion will serve as the exploration vehicle that will carry the crew to space, provide emergency abort capability, sustain the crew during the space travel and provide safe re-entry from deep space return velocities.

What’s In Store For 2017 At NASA?

In 2017, computers in the Orion crew module for the spacecraft’s first mission with our Space Launch System rocket will be turned on for the first time to verify the spacecraft can route power and send commands. While the Orion outfitting and assembly process for the first mission of the spacecraft atop the SLS rocket continues in 2017, construction will also begin on the vehicle for the first Orion flight with astronauts that will fly as early as 2021.

Cutting Edge Technology

Our Space Technology office is dedicated to pushing the technological envelope, taking on challenges not only to further space agency missions near Earth, but also to sustain future deep space exploration activities. 

image

In 2016, the office focused on and made significant progress in advancing technologies and capabilities that will continue into 2017. 

Advances in Aeronautics

Our rich aeronautical research heritage added to its history of technical innovation in 2016 with advancements that will help make airplanes use less fuel, release fewer emissions and fly more quietly…and that includes working to return supersonic flight to the commercial marketplace.

image

We took steps in 2016 to resume designing, building and flying several experimental aircraft, or X-planes, as a means to demonstrate key green technologies and help accelerate their use by industry. In 2017, this research will continue to grow and develop.

Thanks for joining us in 2016, we look forward to sharing our progress with you in the coming year. 

Happy New Year!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com

More Posts from Nasa and Others

9 years ago

Travel Posters of Fantastic Excursions

What would the future look like if people were regularly visiting to other planets and moons? These travel posters give a glimpse into that imaginative future. Take a look and choose your destination:

The Grand Tour

image

Our Voyager mission took advantage of a once-every-175-year alignment of the outer planets for a grand tour of the solar system. The twin spacecraft revealed details about Jupiter, Saturn, Uranus and Neptune – using each planet’s gravity to send them on to the next destination.

Mars

image

Our Mars Exploration Program seeks to understand whether Mars was, is, or can be a habitable world. This poster imagines a future day when we have achieved our vision of human exploration of the Red Planet and takes a nostalgic look back at the great imagined milestones of Mars exploration that will someday be celebrated as “historic sites.”

Earth

image

There’s no place like home. Warm, wet and with an atmosphere that’s just right, Earth is the only place we know of with life – and lots of it. Our Earth science missions monitor our home planet and how it’s changing so it can continue to provide a safe haven as we reach deeper into the cosmos.

Venus

image

The rare science opportunity of planetary transits has long inspired bold voyages to exotic vantage points – journeys such as James Cook’s trek to the South Pacific to watch Venus and Mercury cross the face of the sun in 1769. Spacecraft now allow us the luxury to study these cosmic crossings at times of our choosing from unique locales across our solar system.

Ceres

image

Ceres is the closest dwarf planet to the sun. It is the largest object in the main asteroid belt between Mars and Jupiter, with an equatorial diameter of about 965 kilometers. After being studied with telescopes for more than two centuries, Ceres became the first dwarf planet to be explored by a spacecraft, when our Dawn probe arrived in orbit in March 2015. Dawn’s ongoing detailed observations are revealing intriguing insights into the nature of this mysterious world of ice and rock.

Jupiter

image

The Jovian cloudscape boasts the most spectacular light show in the solar system, with northern and southern lights to dazzle even the most jaded space traveler. Jupiter’s auroras are hundreds of times more powerful than Earth’s, and they form a glowing ring around each pole that’s bigger than our home planet. 

Enceladus

image

The discovery of Enceladus’ icy jets and their role in creating Saturn’s E-ring is one of the top findings of the Cassini mission to Saturn. Further Cassini discoveries revealed strong evidence of a global ocean and the first signs of potential hydrothermal activity beyond Earth – making this tiny Saturnian moon one of the leading locations in the search for possible life beyond Earth.

Titan

image

Frigid and alien, yet similar to our own planet billions of years ago, Saturn’s largest moon, Titan has a thick atmosphere, organic-rich chemistry and surface shaped by rivers and lakes of liquid ethane and methane. Our Cassini orbiter was designed to peer through Titan’s perpetual haze and unravel the mysteries of this planet-like moon.

Europa

image

Astonishing geology and the potential to host the conditions for simple life making Jupiter’s moon Europa a fascinating destination for future exploration. Beneath its icy surface, Europa is believed to conceal a global ocean of salty liquid water twice the volume of Earth’s oceans. Tugging and flexing from Jupiter’s gravity generates enough heat to keep the ocean from freezing.

You can download free poster size images of these thumbnails here: http://www.jpl.nasa.gov/visions-of-the-future/

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
7 years ago

Innovation at 100

Air travel, spaceflight, robotic solar-system missions: science fiction to those alive at the turn of the 20th century became science fact to those living in the 21st. 

Innovation At 100

America’s aerospace future has been literally made at our Langley Research Center by the best and brightest the country can offer. Here are some of the many highlights from a century of ingenuity and invention.

Making the Modern Airplane

In times of peace and war, Langley helped to create a better airplane, including unique wing shapes, sturdier structures, the first engine cowlings, and drag cleanup that enabled the Allies to win World War II.

image

In 1938 Langley mounted the navy's Brewster XF2A-1 Buffalo in the Full-Scale Tunnel for drag reduction studies.

Wind Goes to Work

Langley broke new ground in aeronautical research with a suite of first-of-their-kind wind tunnels that led to numerous advances in commercial, military and vertical flight, such as helicopters and other rotorcraft. 

image

Airflow turning vanes in Langley’s 16-Foot Transonic Tunnel.

Aeronautics Breakthroughs

Aviation Hall of Famer Richard Whitcomb’s area rule made practical jet flight a reality and, thanks to his development of winglets and the supercritical wing, enabled jets to save fuel and fly more efficiently.

image

Richard Whitcomb examines a model aircraft incorporating his area rule.

Making Space

Langley researchers laid the foundation for the U.S. manned space program, played a critical role in the Mercury, Gemini and Apollo programs, and developed the lunar-orbit rendezvous concept that made the Moon landing possible.

image

Neil Armstrong trained for the historic Apollo 11 mission at the Lunar Landing Research Facility,

Safer Air Above and Below

Langley research into robust aircraft design and construction, runway safety grooving, wind shear, airspace management and lightning protection has aimed to minimize, even eliminate air-travel mishaps

image

NASA’s Boeing 737 as it approached a thunderstorm during microburst wind shear research in Colorado in 1992.

Tracking Earth from Aloft

Development by Langley of a variety of satellite-borne instrumentation has enabled real-time monitoring of planet-wide atmospheric chemistry, air quality, upper-atmosphere ozone concentrations, the effects of clouds and air-suspended particles on climate, and other conditions affecting Earth’s biosphere.

image

Crucial Shuttle Contributions

Among a number of vital contributions to the creation of the U.S. fleet of space shuttles, Langley developed preliminary shuttle designs and conducted 60,000 hours of wind tunnel tests to analyze aerodynamic forces affecting shuttle launch, flight and landing.

image

Space Shuttle model in the Langley wind tunnel.

Decidedly Digital

Helping aeronautics transition from analog to digital, Langley has worked on aircraft controls, glass cockpits, computer-aided synthetic vision and a variety of safety-enhancing onboard sensors to better monitor conditions while airborne and on the ground.

image

Aerospace research engineer Kyle Ellis uses computer-aided synthetic vision technology in a flight deck simulator.

Fast, Faster, Fastest

Langley continues to study ways to make higher-speed air travel a reality, from about twice the speed of sound – supersonic – to multiple times: hypersonic.

image

Langley continues to study ways to make higher-speed air travel a reality, from about twice the speed of sound – supersonic – to multiple times: hypersonic.

Safer Space Sojourns

Protecting astronauts from harm is the aim of Langley’s work on the Orion Launch Abort System, while its work on materials and structures for lightweight and affordable space transportation and habitation will keep future space travelers safe.

image

Unmasking the Red Planet

Beginning with its leadership role in Project Viking, Langley has helped to unmask Martian mysteries with a to-date involvement in seven Mars missions, with participation in more likely to come.

image

First image of Mars taken by Viking 1 Lander.

Touchdown Without Terror

Langley’s continued work on advanced entry, descent and landing systems aims to make touchdowns on future planetary missions routinely safe and secure.

image

Artist concept of NASA's Hypersonic Inflatable Aerodynamic Decelerator - an entry, descent and landing technology.

Going Green

Helping to create environmentally benign aeronautical technologies has been a focus of Langley research, including concepts to reduce drag, weight, fuel consumption, emissions, and lessen noise.

image

Intrepid Inventors

With a history developing next-generation composite structures and components, Langley innovators continue to garner awards for a variety of aerospace inventions with a wide array of terrestrial applications.

image

Boron Nitride Nanotubes: High performance, multi-use nanotube material.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Space Station Research: Air and Space Science

Each month, we highlight a different research topic on the International Space Station. In June, our focus is Air and Space Science.

image

How is the space station being used to study space? Studies in fundamental physics address space, time, energy and the building blocks of matter. Recent astronomical observation and cosmological models strongly suggest that dark matter and dark energy, which are entities not directly observed and completely understood, dominate these interactions at the largest scales.

image

The space station provides a modern and well-equipped orbiting laboratory for a set of fundamental physics experiments with regimes and precision not achievable on the ground. 

For example, the CALorimetric Electron Telescope (CALET) is an astrophysics mission that searches for signatures of dark matter (pictured above). It can observe discrete sources of high energy particle acceleration in our local region of the galaxy. 

How is the space station contributing to aeronautics? It provides a long-duration spaceflight environment for conducting microgravity physical science research. This environment greatly reduces buoyancy-driven convection and sedimentation in fluids. By eliminating gravity, space station allows scientists to advance our knowledge in fluid physics and materials science that could lead to better designated air and space engines; stronger, lighter alloys; and combustion processes that can lead to more energy-efficient systems.

image

How is the space station used to study air? The Cloud-Aerosol Transport System (CATS) is a laster remote-sensing instrument, or lidar, that measures clouds and tiny aerosol particles in the atmosphere such as pollution, mineral dust and smoke. These atmospheric components play a critical part in understanding how human activities such as fossil fuel burning contribute to climate change.

image

The ISS-RapidScat is an instrument that monitors winds for climate research, weather predictions and hurricane monitoring from the International Space Station.

image

For more information on space station research, follow @ISS_Research on Twitter!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
5 years ago

Earth’s Land Ice by the Numbers

“At a glacial pace” used to mean moving so slowly the movement is almost imperceptible. Lately though, glaciers are moving faster. Ice on land is melting and flowing, sending water to the oceans, where it raises sea levels.

image

In 2018, we launched the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) to continue a global record of ice elevation. Now, the results are in. Using millions of measurements from a laser in space and quite a bit of math, researchers have confirmed that Earth is rapidly losing ice.

16 Years 

image

ICESat-2 was a follow-up mission to the original ICESat, which launched in 2003 and took measurements until 2009. Comparing the two records tells us how much ice sheets have lost over 16 years.

image

½ Inch

During those 16 years, melting ice from Antarctica and Greenland was responsible for just over a half-inch of sea level rise. When ice on land melts, it eventually finds its way to the ocean. The rapid melt at the poles is no exception.

image

400,000 Olympic Swimming Pools

One gigaton of ice holds enough water to fill 400,000 Olympic swimming pools. It’s also enough ice to cover Central Park in New York in more than 1,000 feet of ice.

image

200 Gigatons

Between 2003 and 2019, Greenland lost 200 gigatons of ice per year. That’s 80 million Olympic swimming pools reaching the ocean every year, just from Greenland alone.

image

118 Gigatons

During the same time period, Antarctica lost 118 gigatons of ice per year. That’s another 47 million Olympic swimming pools every year. While there has been some elevation gain in the continent’s center from increased snowfall, it’s nowhere near enough to make up for how much ice is lost to the sea from coastal glaciers.

image

10,000 Pulses

ICESat-2 sends out 10,000 pulses of laser light a second down to Earth’s surface and times how long it takes them to return to the satellite, down to a billionth of a second. That’s how we get such precise measurements of height and changing elevation.

image

These numbers confirm what scientists have been finding in most previous studies and continue a long record of data showing how Earth’s polar ice is melting. ICESat-2 is a key tool in our toolbox to track how our planet is changing.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
7 years ago

I was looking at the GLOBE Observer experiments for citizens and was wondering how the eclipse affects the cloud type? Or, I guess, why is that an important thing to measure? Thank you for answering our questions!

As my dad likes to say, I went to college to take up space, so I’m not sure what happens in the atmosphere. However, I think that the atmospheric scientists are interested in the types of waves that will be set up by the temperature gradients generated by the eclipse. So as totality occurs you get a very fast temperature drop in a localized area. I believe this can set up strong winds which may affect the type of clouds and/or their shapes. This is going to be the best-observed eclipse! And one thing I’ve learned as a scientist is that you never know what you’ll find in your data so collect as much of it as possible even if you aren’t sure what you’ll find. That is sometimes when you get the most exciting results! Thanks for downloading the app and helping to collect the data! 


Tags
6 years ago

@ottergirl-fitness: What produce have you grown on the International Space Station?


Tags
7 years ago

6 Ways You Are Safer Thanks to NASA Technology

By now everyone knows that we are to thank for the memory foam in your mattress and the camera in your cell phone. (Right? Right.)

But our technology is often also involved behind the scenes—in ways that make the products we use daily safer and stronger, and in some cases, that can even save lives.

Here are some examples from this year’s edition of Spinoff, our yearly roundup of “space in your life”:

Impact Testing

image

What happens to your car bumper in an accident? When does it crumple and when does it crack? And are all bumpers coming off the assembly line created equal?

These types of questions are incredibly important when designing a safe car, and one technology that helps almost every U.S. automobile manufacturer find answers is something we helped develop when we had similar questions about the Space Shuttle.

Before flying again after the Columbia disaster in 2003, we had to be sure we understood what went wrong and how to prevent it from ever happening again. We worked with Trilion, Inc. to develop a system using high-speed cameras and software to analyze every impact—from the one that actually happened on the Shuttle to any others we could imagine—and design fixes.

Finding Survivors

image

We’re pretty good at finding things you can’t see with the naked eye—from distant exoplanets to water on Mars.

But there are also plenty of uses for that know-how on Earth.

One example that has already saved lives: locating heartbeats under debris.

Engineers at our Jet Propulsion Laboratory adapted technology first devised to look for gravity fluctuations to create FINDER, which stands for Finding Individuals for Disaster and Emergency Response and can detect survivors through dense rubble.

We have licensed the technology to two companies, including R4, and it has already been used in natural disaster responses, including after earthquakes in Nepal, Mexico City, Ecuador, and after Hurricane Maria in Puerto Rico.

Fighting Forest Fires

image

As we have seen this year with devastating wildfires in California, forest fires can spread incredibly quickly.

Knowing when to order an evacuation, where to send firefighters, and how to make every other decision—all amid a raging inferno—depends on having the most up-to-date information as quickly as possible.

Using our expertise in remote sensing and communicating from space, we helped the U.S. Forest Service make its process faster and more reliable, so the data from airborne sensors gets to decision makers on the front line and at the command center in the blink of an eye.

Safer, Germ-Free Ambulances 

image

When paramedics come racing into a home, the last thing anybody is worrying about is where the ambulance was earlier that morning. A device we helped create ensures you won’t have to.

AMBUstat creates a fog that sterilizes every surface in an ambulance in minutes, so any bacteria, viruses or other contaminants won’t linger on to infect the next patient.

This technology works its magic through the power of atomic oxygen—the unpaired oxygen atoms that are common in the upper reaches of Earth’s atmosphere. We’ve had to learn about these atoms to devise ways to ensure they won’t destroy our spacecraft or harm astronauts, but here, we were able to use that knowledge to direct that destructive power at germs.

Air Filters 

image

Did you know the air we breathe inside buildings is often up to 10 times more polluted than the air outdoors?

Put the air under a microscope and it’s not pretty, but a discovery we made in the 1990s can make a big impact.

We were working on a way to clear a harmful chemical that accumulates around plants growing on a spacecraft, and it turned out to also neutralize bacteria, viruses, and mold and eliminate volatile organic compounds.

Now air purifiers using this technology are deployed in hospital operating rooms, restaurant kitchens, and even major baseball stadiums to improve air quality and keep everyone healthier. Oh, and you can buy one for your house, too.

Driverless Cars 

image

Car companies are moving full-speed ahead to build the driverless cars of the not-so-distant future. Software first created to help self-learning robots navigate on Mars may help keep passengers and pedestrians safer once those cars hit the road. The software creates an artificially intelligent “brain” for a car (or drone, for that matter) that can automatically identify and differentiate between cars, trucks, pedestrians, cyclists, and more, helping ensure the car doesn’t endanger any of them. 

So, now that you know a few of the spinoff technologies that we helped develop, you can look for them throughout your day. Visit our page to learn about more spinoff technologies: https://spinoff.nasa.gov Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com. 


Tags
5 years ago

What is it like floating in space?


Tags
6 years ago
We Asked Real Life Astronauts YOUR Questions! Was Your Submission Sent To Space?

We asked real life astronauts YOUR questions! Was your submission sent to space?

Astronauts Drew Feustel & Ricky Arnold recently recorded answers to your questions in a Video Answer Time session. We collected your questions and sent them to space to be answered by the astronauts on Friday, May 18. We recorded their answers and will post them tomorrow, May 30, here on our Tumblr. 

Was your question selected to be sent to the International Space Station? Check our Tumblr tomorrow, starting at noon EDT to find out!

About the astronauts:

Andrew J. Feustel was selected by NASA in 2000.  He has been assigned to Expedition 55/56, which launched in March 2018. The Lake Orion, Michigan native has a Ph.D. in the Geological Sciences, specializing in Seismology, and is a veteran of two spaceflights. Follow Feustel on Twitter and Instagram.

Richard R. Arnold II was selected as an astronaut by NASA in May 2004. The Maryland native worked in the marine sciences and as a teacher in his home state, as well as in countries such as Morocco, Saudi Arabia, and Indonesia. Follow Arnold on Twitter and Instagram.

Don’t forget check our Tumblr tomorrow at noon EDT to see if your question was answered by real-life astronauts in space. 

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
8 years ago
Hello!  @Astro_Jessica Here Ready To Take Your @nasa Questions! @sxsw 

Hello!  @Astro_Jessica here ready to take your @nasa questions! @sxsw 


Tags
Loading...
End of content
No more pages to load
  • blackbirdsofrye
    blackbirdsofrye liked this · 1 year ago
  • kennadeek
    kennadeek liked this · 1 year ago
  • steffsfuzzball
    steffsfuzzball reblogged this · 7 years ago
  • jordanorsomething-blog1
    jordanorsomething-blog1 liked this · 7 years ago
  • wannabeyour-slut
    wannabeyour-slut liked this · 7 years ago
  • diabaliful
    diabaliful reblogged this · 7 years ago
  • rocketsandspacetravel
    rocketsandspacetravel reblogged this · 7 years ago
  • marshmelonfluff
    marshmelonfluff liked this · 8 years ago
  • ahihcu00
    ahihcu00 reblogged this · 8 years ago
  • ahihcu00
    ahihcu00 liked this · 8 years ago
  • cipheredsong
    cipheredsong liked this · 8 years ago
  • 2kbloodsucker
    2kbloodsucker reblogged this · 8 years ago
  • 2kbloodsucker
    2kbloodsucker liked this · 8 years ago
  • bluethepaladin
    bluethepaladin reblogged this · 8 years ago
  • thegalacticpope
    thegalacticpope liked this · 8 years ago
  • swex7
    swex7 reblogged this · 8 years ago
  • brokentowels
    brokentowels liked this · 8 years ago
  • grumpyspacekid
    grumpyspacekid liked this · 8 years ago
  • keithbangkok
    keithbangkok liked this · 8 years ago
  • otakugallifreyan-blog1-blog
    otakugallifreyan-blog1-blog reblogged this · 8 years ago
  • otakugallifreyan-blog1-blog
    otakugallifreyan-blog1-blog liked this · 8 years ago
  • youseethehat
    youseethehat reblogged this · 8 years ago
  • carolinepangz
    carolinepangz liked this · 8 years ago
  • tired-science-nerd
    tired-science-nerd reblogged this · 8 years ago
  • thingsmydadmightlike-blog
    thingsmydadmightlike-blog reblogged this · 8 years ago
  • polariiize
    polariiize liked this · 8 years ago
  • fuckingnintendogsman
    fuckingnintendogsman liked this · 8 years ago
  • t-p-allen-blog
    t-p-allen-blog liked this · 8 years ago
  • justicechou-blog
    justicechou-blog liked this · 8 years ago
  • zeaphra
    zeaphra reblogged this · 8 years ago
  • littleturret
    littleturret liked this · 8 years ago
  • oh--captain--my-captain
    oh--captain--my-captain reblogged this · 8 years ago
  • oh--captain--my-captain
    oh--captain--my-captain liked this · 8 years ago
  • uhdolla
    uhdolla liked this · 8 years ago
  • wistfulwanker
    wistfulwanker reblogged this · 8 years ago
  • awkwardgaydude
    awkwardgaydude reblogged this · 8 years ago
  • awkwardgaydude
    awkwardgaydude liked this · 8 years ago
  • elefantnap
    elefantnap reblogged this · 8 years ago
nasa - NASA
NASA

Explore the universe and discover our home planet with the official NASA Tumblr account

1K posts

Explore Tumblr Blog
Search Through Tumblr Tags