Just me meeting my hero Katherine Johnson after interviewing her in the newsroom for another article I’m writing. nbd ((VERY BIG DEAL)) •🚀•🚀• Katherine G. Johnson is a pioneer in American space history. A NASA mathematician, Johnson’s computations have influenced every major space program from Mercury through the Shuttle. She even calculated the flight path for the first American mission space. In 1953, Johnson was contracted as a research mathematician at the Langley Research Center with the National Advisory Committee for Aeronautics (NACA), the agency that preceded NASA. She worked in a pool of women performing math calculations until she was temporarily assigned to help the all-male flight research team, and wound up staying there. Johnson’s specialty was calculating the trajectories for space shots which determined the timing for launches, including the Mercury mission and Apollo 11, the mission to the moon. (at NASA Langley Research Center)
Skywatchers in the western hemisphere will see a rare sight on Monday: over the course of several hours, the silhouette of the planet Mercury will appear to cross the face of the Sun. The “transit” of Mercury results from the precise alignment of the orbits of Mercury and Earth that only happens either 13 or 14 times per century; usually the orbital alignment is weak, and as seen from our planet Mercury “misses” the Sun’s disk as it orbits once every 88 days. But on Monday, the view through a properly-shielded telescope will reveal the innermost planet as a dark, perfectly circular spot that moves completely across the Sun in exactly seven and a half hours.
Because of the specifics of our respective orbits, Mercury transits only happen in either the months of May or November, with average dates of 8th May and 10th November. May transits happen less frequently than November transits because during May, Mercury is closer to its largest distance from the Sun, while in November the opposite is true. As a result, the range of possible angles between the Sun and Mercury, as seen from Earth, is smaller in November than May. While the interval between successive November transits can be either 7, 13 or 33 years, May transits are less common, with successive appearances in either 13- or 33-year intervals.
Observations of Mercury transits reach back to at least the seventeenth century. Observations from earlier than this are unlikely because the apparent size of Mercury’s silhouette against the Sun is too small for the unaided eye to resolve. This is why the first recorded Mercury transit — by the French astronomer Pierre Gassendi on 7 November 1631 — dates to after Galileo Galilei’s invention of the telescope in about 1609. Johannes Kepler earlier understood that Mercury’s orbit should periodically take it in front of the Sun, but he died in 1630 before being able to observe a predicted transit.
While these events once had great scientific interest, they are now mainly curiosities that delight astronomy aficionados. Rarer still are transits of Venus across the Sun, the last of which took place in 2012. These events come in pairs separated by 113 years, meaning that most people alive now will not be around to see the next one in December 2117.
Who can see Monday’s event? That depends on the hour of day and which side of the Earth faces the Sun at the time. The map below indicates which parts of the world see either all, some, or none of the transit:
You’ll need at least a good pair of binoculars or a telescope — properly shielded with a heavy filer to prevent eye damage — to even sense Mercury during the transit. It will look like a small, perfectly round and completely opaque black dot against the bright solar photosphere. Mercury is distinguishable in this sense from sunspots, which are irregular in shape, can be partially transparent, and of much larger sizes. This image compares Mercury during a transit (bottom-center) with a sunspot near the solar limb (upper right).
NOTE: DO NOT LOOK AT THE SUN THROUGH A TELESCOPE WITHOUT A FULL-APERTURE SOLAR FILTER! Doing so can cause permanent blindness! Instead, try projecting the image of the sun from a telescope or binoculars onto white paper. This method avoids bringing dangerous, strongly-focused sunlight anywhere near one’s eyes.
Better still: Watch the transit live online! Find live streaming coverage from Slooh, NASA TV, Celestron telescopes, Sky and Telescope magazine, and the Virtual Telescope.
(Top image credit: Sky & Telescope magazine; map and transit image: Fred Espenak)
A smiling Katherine Johnson returned Thursday to the NASA center where, for decades, she used her mathematical smarts to help shape history.
This time she was in the spotlight, not behind a desk making complex calculations and searching for the truth in numbers.
Katherine Johnson worked at NASA's Langley Research Center from 1953 to 1986. Since her retirement, she's been a strong advocate for science, technology, engineering and math (STEM) education.Credits: NASA/David C. Bowman
The mathematician and 97-year-old Newport News resident visited NASA’s Langley Research Center in Hampton, Virginia, to attend a ceremony where a $30 million, 40,000-square-foot Computational Research Facility was named in her honor.
As part of the event, Johnson also received a Silver Snoopy award from Leland Melvin, an astronaut and former NASA associate administrator for education. Often called the astronaut’s award, the Silver Snoopy goes to people who have made outstanding contributions to flight safety and mission success.
“I do thank you so much for your attention, for your kindness, but more than that, I’m so happy to see you giving more recognition to women for the work that they have done,” Johnson said. “I have always done my best … At the time it was just another day’s work.”
Johnson needn’t have been modest. She’s a Presidential Medal of Freedom winnerwhose sharp mind gave NASA an edge in mankind’s quest to explore space.
She first made her mark at a time when women and African-Americans were regularly marginalized.
Working at Langley from 1953 until her retirement in 1986, Johnson made a long list of critical contributions. She calculated the trajectory of the 1961 flight of Alan Shepard, the first American in space. Thursday’s ceremony was held on the 55th anniversary of that historic flight.
Johnson is also credited for verifying the calculations made by early electronic computers of John Glenn’s 1962 launch to orbit and the 1969 Apollo 11 trajectory to the moon.
Margot Lee Shetterly, author of a forthcoming book about Johnson and other women whose calculations were integral to America’s space program, gave the keynote address at Thursday’s event.
Her book, “Hidden Figures: The American Dream and the Untold Story of the Black Women Mathematicians Who Helped NASA and the United States Win the Space Race,” is scheduled to be published in September by William Morrow.
Shetterly noted that Johnson eagerly credits others who share her passion for what’s now called STEM, short for science, technology, engineering and math.
In that spirit, Shetterly reviewed contributions of other notable NASA Langley women: Dorothy Vaughan, Margery Hannah and Christine Darden.
“This is one of the reasons why Mrs. Johnson’s story has captivated us,” Shetterly said. “She has such a towering talent but she has gone out of her way to recognize talent in other people.”
Hollywood is preparing to tell Johnson’s story. A film version of “Hidden Figures” starring Kirsten Dunst, Kevin Costner and Taraji P. Henson is now being produced by 20th Century Fox.
“I want to congratulate you, Mrs. Katherine Goble Johnson, Mrs. Queen Johnson, the brilliant mind, Mrs. Johnson, for the naming of the building, rightfully deserved,” said actress Henson, in a recorded video message played during the ceremony. Henson will portray Johnson in the film.
“You deserve it. They should name NASA after you! Thank you for your service.”
The Katherine G. Johnson Computational Research Facility under construction at NASA Langley is nearly one-fourth complete and is expected to open in 2017. The third new building in the center’s 20-year revitalization plan, it will allow the center to consolidate the majority of its data centers in one location.
Rep. Bobby Scott and Hampton Mayor George Wallace spoke at Thursday’s naming ceremony. Rep. Scott Rigell sent a representative who offered his congratulations. Sen. Tim Kaine sent a video greeting. A letter from NASA Administrator Charlie Bolden was read aloud.
“I am told you once remarked that, even though you grew up in the height of segregation, you did not have time to think about your place in history and that you never had a feeling of inferiority,” Bolden wrote. “Instead you considered yourself, as you described it, ‘as good as anybody, but no better.’
“The truth of the matter is that you are better. You are one of the greatest minds ever to grace our agency or our country and because of your mind, heart, and soul, my own granddaughters and young Americans like them can pursue their own dreams without a feeling of inferiority."
Rep. Scott said he's happy that Johnson's remarkable contributions are finally getting the exposure they deserve. He's looking forward to seeing them splashed across the big screen.
"I enjoy comedies and thrillers like anybody else," he said, "but Dr. Johnson's story is one that we ought to be telling our children."
See a video on Katherine Johnson's legacy.
See more photos from Thursday's event at a Flickr gallery.
This video is a compilation of ultra-high definition time-lapses of the aurora shot from the space station. Auroras are a space weather phenomenon that occur when electrically-charged electrons and protons collide with neutral atoms in the upper atmosphere. The dancing lights of the aurora provide a spectacular show for those on the ground, but also capture the imaginations of scientists who study the aurora and the complex processes that create them.
@nasa
Engineers at NASA’s Langley Research Center in Hampton, Virginia, kicked off a series of nine drop tests of a representative Orion crew capsule withcrash test dummies inside to understand what the spacecraft and astronauts may experience when landing in the Pacific Ocean after deep-space missions. The high-fidelity capsule, coupled with the heat shield from Orion’s first flight in space, was hoisted approximately 16 feet above the water and vertically dropped into Langley’s 20-foot-deep Hydro Impact Basin. The crash test dummies were instrumented to provide data and secured inside the capsule to help provide information engineers need to ensure astronauts will be protected from injury during splashdown. Each test in the series simulates different scenarios for Orion’s parachute-assisted landings, wind conditions, velocities and wave heights the spacecraft may experience when touching down in the ocean.
Prizes, awards and a year’s worth of bragging rights are at stake during our annual Human Exploration Rover Challenge. Year after year, student teams from across the world design, build and race rovers against the clock and each other.
With a space-themed obstacle course, unique rovers, competitive racing, our exhibits and dozens of international teams… it’s everything cool about STEM (science, technology, engineering and mathematics) and space exploration.
1. Bumps, Bruises and Battle Scars
Our space-themed obstacle course often brings racers to their knees, literally. This daunting three-quarter-mile long course is difficult to traverse and isn’t for the faint of heart. It uses both lunar and Mars-themed obstacles to simulate the types of terrain found on distant planets, asteroids or moons.
Plus, teams must race their rovers in, on and around full-scale rockets and space vehicle exhibits on display at the U.S. Space & Rocket Center – the official visitor center for NASA’s Marshall Space Flight Center, both in Huntsville, Alabama. See just how difficult and wild the course can be in our Flickr gallery.
2. Homemade Wheels Only
Rover teams must design and fabricate their own original, or “homemade” wheels. In-Situ Resource Utilization is an important component for our future missions to Mars, asteroids or other planets.
Astronauts can never simply purchase wheels at the store… and neither can our rover teams. Teams must not use any “off-the-shelf” wheels on their rover. By wheels, this means any component used for contact, traction or mobility on the surface of the obstacle course, including, but not limited to wheels, tracks, treads or belts.
And, as in years past, teams are not allowed to incorporate inflated (or un-inflated) pneumatic tires. Inflated tires would be considered an off-the-shelf product, not eligible under the current rules.
3. New “Sample Retrieval” Component Added
Teams may choose to compete in this optional challenge, collecting four samples (liquid, small pebbles, large rocks and soil) using a mechanical arm or a grabber they design and build. Teams must collect a soil sample and liquid sample while driving their rover, as well as collect rock samples (both large and small) while off the rover, all within a 25-minute time limit. The “Sample Retrieval” challenge highlights our deep-space exploration goals. Teams competing are eligible for the $250 prize awarded to the winner of each high school and college/university division.
4. Caution: Real STEM @work
The sights and sounds of welding, grinding and computer programming are prevalent in this hands-on, experiential activity where students solve similar problems faced by our workforce. Rover Challenge provides a unique test-bed to get students involved in real-world research and development. Their progress and success may glean potential technologies for future exploration of Mars and beyond.
5. Draws Inspiration from Apollo and Journey to Mars
Rover Challenge was inspired by the historic success of the lunar rovers from the Apollo missions, each one built by engineers and scientists at NASA Marshall. While we continue to honor our past achievements, we now highlight future accomplishments on deep-space exploration missions to Mars, asteroids or other planets. The addition of the “Sample Return” component and the Martian obstacles emphasize our commitment toward space exploration.
6. Our International Spirit is Alive and Well
Just like the International Space Station; we bring the best of several nations together to promote and celebrate space exploration. Nearly 80 teams are coming from as far away as Italy, Germany, India, Mexico, Columbia and Russia, as well as more “local” talent from the United States and Puerto Rico. View this year’s registered teams HERE.
7. Real-time Racing on Social Media
From start to finish, each racing rover team will be broadcast, live, on the Marshall Center’s Ustream channel. Plus, enjoy real-time race updates, results and awards by following Rover Challenge Twitter: @RoverChallenge
NASA’s Human Exploration Rover Challenge will take place at the U.S. Space & Rocket Center in Huntsville, Alabama, April 8-9. For event details, rules, course information and more, please visit: http://www.nasa.gov/roverchallenge
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
NASA Astronomy Picture of the Day 2016 April 6
Jupiter has auroras. Like near the Earth, the magnetic field of our Solar System’s largest planet compresses when impacted by a gust of charged particles from the Sun. This magnetic compression funnels charged particles towards Jupiter’s poles and down into the atmosphere. There, electrons are temporarily excited or knocked away from atmospheric gases, after which, when de-exciting or recombining with atmospheric ions, auroral light is emitted. The featured illustration portrays the magnificent magnetosphere around Jupiter in action. In the inset image released last month, the Earth-orbiting Chandra X-ray Observatory shows unexpectedly powerful X-ray light emitted by Jovian auroras, depicted in false-colored purple. That Chandra inset is superposed over an optical image taken at a different time by the Hubble Space Telescope. This aurora on Jupiter was seen in October 2011, several days after the Sun emitted a powerful Coronal Mass Ejection (CME).
For the first time, Kepler measured the “shock breakout” of a star, the early flash from the shockwave of a dying red supergiant. The flash comes from a type II supernova, KSN 2011d. Read more
~*~
“When you experience all of the work that is going on here at Langley today, tell people how you feel.” – Charles Bolden, Jr. (Maj. Gen. USMC-Ret), NASA Administrator
~*~
On February 9, 2016 I was offered the opportunity to tour NASA’s Langley Research Center (LRC) facilities and attend the State of NASA Address as a social media press correspondent with NASA Social.
Keep reading
TEMPO’s measurements from geostationary orbit (GEO) will create a revolutionary dataset that provides understanding and improves prediction of air quality (AQ) and climate forcing.
The KORUS-AQ airborne science experiment taking to the field in South Korea this spring is part of a long-term, international project to take air quality observations from space to the next level and better inform decisions on how to protect the air we breathe.
Before a new generation of satellite sensors settle into orbit, field missions like KORUS-AQ provide opportunities to test and improve the instruments using simulators that measure above and below aircraft, while helping to infer what people breathe at the surface.
These geostationary instruments will make up a northern hemisphere air quality constellation to analyze their respective regions.Credits: Image Courtesy of Andreas Richter (University of Bremen) and Jhoon Kim (Yonsei University)
“We want to move beyond forecasting air pollution, we want to influence strategies to improve it,” said Jim Crawford, a lead scientist at NASA’s Langley Research Center in Hampton, Virginia. “This is where satellite observations can play an important role.”
Existing low Earth orbit (LEO) instruments have established the benefit of space-based views of air pollution. From space, large areas can be viewed consistently, whereas from the ground only discrete (often single) points can be measured. As Dave Flittner, TEMPO project scientist, explains, a geostationary (GEO) air-quality constellation can accurately track the import and export of air pollution as it is transported by large-scale weather patterns.
TEMPO, or Tropospheric Emissions: Monitoring of Pollution, is one instrument on the road to improving air quality from space. According to Flittner, hardware has recently begun development and TEMPO is on track to be finished no later than fall of 2017, and available for launch on a to be selected commercial communications satellite.
For the first time, TEMPO will make accurate hourly daytime measurements of tropospheric pollutants (specifically ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, and aerosols) with high resolution over the U.S., Canada and Mexico. With help from related international missions, these observations provide a complete picture of pollution sources in the northern hemisphere and how they influence air quality from local to global scales.
These geostationary instruments will make up a northern hemisphere air quality constellation to analyze their respective regions.
Credits: Image Courtesy of Andreas Richter (University of Bremen) and Jhoon Kim (Yonsei University)
About 22,000 miles above the equator, the Korean Aerospace Research Institute’s GEMS (The Geostationary Environmental Monitoring Spectrometer), the European Space Agency’s Sentinel-4/UVN, and NASA’s TEMPO, will maintain their positions in orbit as the Earth rotates, covering a majority of the area from East Asia through greater North America and Europe. Together, these instruments will make up a northern hemisphere air quality constellation.. All three of these instruments analyze the same pollutant concentrations in their respective region, from the morning to evening.
Another critical part of the global air quality constellation are the LEO instruments, such as TROPOMI (a.k.a. Sentinel-5P), which will launch in late 2016 and provide a common reference for the three GEO sensors, allowing for a more accurate assessment of air quality within each region.
Denise Lineberry
NASA Langley Research Center
This self-portrait of NASA's Curiosity Mars rover shows the vehicle at "Namib Dune," where the rover's activities included scuffing into the dune with a wheel and scooping samples of sand for laboratory analysis.
The scene combines 57 images taken on Jan. 19, 2016, during the 1,228th Martian day, or sol, of Curiosity's work on Mars. The camera used for this is the Mars Hand Lens Imager (MAHLI) at the end of the rover's robotic arm.
Namib Dune is part of the dark-sand "Bagnold Dune Field" along the northwestern flank of Mount Sharp. Images taken from orbit have shown that dunes in the Bagnold field move as much as about 3 feet (1 meter) per Earth year.
The location of Namib Dune is show on a map of Curiosity's route athttp://mars.nasa.gov/msl/multimedia/images/?ImageID=7640. The relationship of Bagnold Dune Field to the lower portion of Mount Sharp is shown in a map at PIA16064.
The view does not include the rover's arm. Wrist motions and turret rotations on the arm allowed MAHLI to acquire the mosaic's component images. The arm was positioned out of the shot in the images, or portions of images, that were used in this mosaic. This process was used previously in acquiring and assembling Curiosity self-portraits taken at sample-collection sites, including "Rocknest" (PIA16468), "Windjana" (PIA18390) and "Buckskin" (PIA19807).
For scale, the rover's wheels are 20 inches (50 centimeters) in diameter and about 16 inches (40 centimeters) wide.
MAHLI was built by Malin Space Science Systems, San Diego. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Science Laboratory Project for the NASA Science Mission Directorate, Washington. JPL designed and built the project's Curiosity rover.
More information about Curiosity is online at http://www.nasa.gov/msl andhttp://mars.jpl.nasa.gov/msl/.
A new map of Mars' gravity made with three NASA spacecraft is the most detailed to date, providing a revealing glimpse into the hidden interior of the Red Planet.
"Gravity maps allow us to see inside a planet, just as a doctor uses an X-ray to see inside a patient," said Antonio Genova of the Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts. "The new gravity map will be helpful for future Mars exploration, because better knowledge of the planet's gravity anomalies helps mission controllers insert spacecraft more precisely into orbit about Mars. Furthermore, the improved resolution of our gravity map will help us understand the still-mysterious formation of specific regions of the planet." Genova, who is affiliated with MIT but is located at NASA's Goddard Space Flight Center in Greenbelt, Maryland, is the lead author of a paper on this research published online March 5 in the journal Icarus.
The improved resolution of the new gravity map suggests a new explanation for how some features formed across the boundary that divides the relatively smooth northern lowlands from heavily cratered southern highlands. Also, the team confirmed that Mars has a liquid outer core of molten rock by analyzing tides in the Martian crust and mantle caused by the gravitational pull of the sun and the two moons of Mars. Finally, by observing how Mars' gravity changed over 11 years – the period of an entire cycle of solar activity -- the team inferred the massive amount of carbon dioxide that freezes out of the atmosphere onto a Martian polar ice cap when it experiences winter. They also observed how that mass moves between the south pole and the north pole with the change of season in each hemisphere.
The map was derived using Doppler and range tracking data collected by NASA's Deep Space Network from three NASA spacecraft in orbit around Mars: Mars Global Surveyor (MGS), Mars Odyssey (ODY), and the Mars Reconnaissance Orbiter (MRO). Like all planets, Mars is lumpy, which causes the gravitational pull felt by spacecraft in orbit around it to change. For example, the pull will be a bit stronger over a mountain, and slightly weaker over a canyon.
Slight differences in Mars' gravity changed the trajectory of the NASA spacecraft orbiting the planet, which altered the signal being sent from the spacecraft to the Deep Space Network. These small fluctuations in the orbital data were used to build a map of the Martian gravity field.
The gravity field was recovered using about 16 years of data that were continuously collected in orbit around Mars. However, orbital changes from uneven gravity are tiny, and other forces that can perturb the motion of the spacecraft had to be carefully accounted for, such as the force of sunlight on the spacecraft's solar panels and drag from the Red Planet's thin upper atmosphere. It took two years of analysis and computer modeling to remove the motion not caused by gravity.
"With this new map, we've been able to see gravity anomalies as small as about 100 kilometers (about 62 miles) across, and we've determined the crustal thickness of Mars with a resolution of around 120 kilometers (almost 75 miles)," said Genova. "The better resolution of the new map helps interpret how the crust of the planet changed over Mars' history in many regions."
For example, an area of lower gravity between Acidalia Planitia and Tempe Terra was interpreted before as a system of buried channels that delivered water and sediments from Mars' southern highlands into the northern lowlands billions of years ago when the Martian climate was wetter than it is today. The new map reveals that this low gravity anomaly is definitely larger and follows the boundary between the highlands and the lowlands. This system of gravity troughs is unlikely to be only due to buried channels because in places the region is elevated above the surrounding plains. The new gravity map shows that some of these features run perpendicular to the local topography slope, against what would have been the natural downhill flow of water.
An alternative explanation is that this anomaly may be a consequence of a flexure or bending of the lithosphere -- the strong, outermost layer of the planet -- due to the formation of the Tharsis region. Tharsis is a volcanic plateau on Mars thousands of miles across with the largest volcanoes in the solar system. As the Tharsis volcanoes grew, the surrounding lithosphere buckled under their immense weight.
The new gravity field also allowed the team to confirm indications from previous gravity solutions that Mars has a liquid outer core of molten rock. The new gravity solution improved the measurement of the Martian tides, which will be used by geophysicists to improve the model of Mars' interior.
Changes in Martian gravity over time have been previously measured using the MGS and ODY missions to monitor the polar ice caps. For the first time, the team used MRO data to continue monitoring their mass. The team has determined that when one hemisphere experiences winter, approximately 3 trillion to 4 trillion tons of carbon dioxide freezes out of the atmosphere onto the northern and southern polar caps, respectively. This is about 12 to 16 percent of the mass of the entire Martian atmosphere. NASA's Viking missions first observed this massive seasonal precipitation of carbon dioxide. The new observation confirms numerical predictions from the Mars Global Reference Atmospheric Model – 2010.
The research was funded by grants from NASA's Mars Reconnaissance Orbiter mission and NASA's Mars Data Analysis Program.
Bill Steigerwald
Engineers at NASA’s Langley Research Center in Hampton, Virginia, are developing inflatable heat shield technology called a Hypersonic Inflatable Aerodynamic Decelerator that could be vacuum packed into a rocket, then expanded in space to allow more cargo or even humans to land on distant planets, like Mars. Here they are testing the packing of a 9-foot diameter donut-shaped test article to simulate what would happen before a space mission.
NASA astronaut Suni Williams cannonballs off a Boeing CST-100 Starliner test article after NASA engineers and Air Force pararescuemen climbed aboard the spacecraft to simulate rescuing astronauts in the event of an emergency during launch or ascent.
The Starliner is designed for land-based returns, but simulating rescue operations at NASA’s Langley Research Center’s Hydro Impact Basin in Hampton, Virginia, ensures flight crew and ground support are versed in what to do during a contingency scenario.
For more information about rescue and safety operations, see Commercial Crew: Building in Safety from the Ground Up in a Unique Way.
Credit: NASA/David C. Bowman
The National Advisory Committee for Aeronautics (NACA) reached a major milestone in 2015.
On March 3, the agency that in 1958 would dissolve and reform as NASA celebrated its centennial.
NASA Langley, established in 1917 as the Langley Memorial Aeronautical Laboratory, was the NACA's first field center.
During the March 24 talk, Tom Crouch, senior curator of aeronautics; John Anderson, curator of aerodynamics; and Roger Launius, associate director for collections and curatorial affairs discussed the formation of the NACA, the technological breakthroughs it generated, and the evolution of its research and development model.
Here are nine of the more interesting things they shared:
1. Charles Doolittle Walcott, a self-trained scientist and the man whose efforts led to the formation of the NACA, was best known not as an aeronautics expert, but as a paleontologist. "Throughout his long career," Crouch said, "he was really one of the most effective spokesmen for science and technology in the federal government."
2. Walcott was a good friend of aviation pioneer and Wright brothers rival Samuel Pierpont Langley, who was devastated in 1903 when his Aerodrome flying machine twice failed to take flight over the Potomoc River. Langley died in 1906. "One of Charles Doolittle Walcott's aims in life was to resurrect and honor the memory of his old friend Samuel Pierpont Langley," Crouch said — so much so that he once suggested naming all airplanes Langleys. Eventually, Walcott named the Langley Memorial Aeronautical Laboratory after his friend.
3. Prior to World War I, aeronautics was not a high priority for the U.S. government. On a list of the aeronautics appropriations for 14 countries in the period from 1908 to 1913, the United States was dead last with $435,000. That put the U.S. behind Brazil, Chile, Bulgaria, Spain and Greece. Topping the list: Germany, with $28 million.
4. In the late 1920s, Fred Weick, a Langley engineer, developed what became known as the NACA cowling, a type of fairing or cover used to reduce drag on aircraft engines. The cowling also improved engine cooling. In 1929, Weick won the Collier Trophy, U.S. aviation's more prestigious award, for this innovation.
5. By the 1930s, the world had entered a golden era of aeronautics — largely due to the NACA. "The NACA was aeronautical engineering," said Anderson. And some of the most important aeronautical innovations were taking place right here at Langley Research Center. It was during the 1930s that Langley aerodynamicist Eastman Jacobs developed a systematic way of designing an airfoil. That systematic design became known as the NACA airfoil, and aircraft makers worldwide began using it.
In 1934, during a high-speed wind tunnel test at Langley, a researcher named John Stack captured the first ever photograph of a shockwave on an airfoil. Credits: NASA
6. Aeronautics researchers in the 1930s were struggling to determine the cause of a peculiar phenomenon — as an object approached the speed of sound, drag greatly increased and lift drastically reduced. In 1934, a young Langley researcher named John Stack figured out why by photographing a high-speed wind tunnel test of an airfoil. The photo captured the culprit — a shockwave. It was the first time a shockwave had ever been photographed on an airfoil. "This was a dramatic intellectual contribution of the NACA that a lot of people don't really appreciate," said Anderson.
7. The woman who developed the format and style guide for the NACA's technical reports was a physicist from North Dakota named Pearl Young. She came to Langley in 1922, the first professional woman employed at the center, and was appointed Langley's first Chief Technical Editor in 1929. "The technical memorandums … became the model worldwide for how to increase knowledge and make it available to the broadest base of people that can use it," said Launius.
8. The NACA used to host an annual Aircraft Engineering Research Conference at Langley. The conferences were "a who's who of anybody involved in aeronautics in the United States," said Launius. "This interchange of information, of ideas, of concerns, becomes the critical component to fueling the research processes that led to some of the great breakthroughs of the early period before World War II." Among the notable attendees at the 1934 conference were Orville Wright, Charles Lindbergh and Howard Hughes.
A photo taken in Langley's Full Scale Tunnel during the 1934 Aircraft Engineering Research Conference at Langley. Orville Wright, Charles Lindbergh and Howard Hughes were in attendance. Credits: NASA
9. Following World War II, according to Launius, the NACA began to change its "model ever so slightly," making its first forays into public-private partnerships. Perhaps the earliest example of these partnerships was the Bell X-1, a joint project between the NACA, the U.S. Air Force and Bell Aircraft Company. The Bell X-1 became the first manned aircraft to break the sound barrier.
The return of supersonic passenger air travel is one step closer to reality with NASA's award of a contract for the preliminary design of a "low boom" flight demonstration aircraft. This is the first in a series of 'X-planes' in NASA's New Aviation Horizons initiative, introduced in the agency's Fiscal Year 2017 budget.
NASA Administrator Charles Bolden announced the award at an event Monday at Ronald Reagan Washington National Airport in Arlington, Virginia.
The return of supersonic passenger travel is one step closer to reality with NASA's award of a contract for the preliminary design of a low boom flight demonstrator aircraft. This is the first in a series of X-planes in NASA's New Aviation Horizons initiative, introduced in the agency’s Fiscal Year 2017 budget.Credits: NASA
"NASA is working hard to make flight cleaner, greener, safer and quieter – all while developing aircraft that travel faster, and building an aviation system that operates more efficiently," said Bolden. "To that end, it's worth noting that it's been almost 70 years since Chuck Yeager broke the sound barrier in the Bell X-1 as part of our predecessor agency's high speed research. Now we're continuing that supersonic X-plane legacy with this preliminary design award for a quieter jet that may break the barrier to accessible, affordable supersonic passenger flight."
This is an artist’s concept of a possible Low Boom Flight Demonstration Quiet Supersonic Transport (QueSST) X-plane design. The award of a preliminary design contract is the first step towards the possible return of supersonic passenger travel – but this time quieter and more affordable.Credits: Lockheed Martin
NASA selected a team led by Lockheed Martin Aeronautics Company of Palmdale, California, to complete a preliminary design for Quiet Supersonic Technology (QueSST). The work will be conducted under a task order against the Basic and Applied Aerospace Research and Technology (BAART) contract at NASA's Langley Research Center in Hampton, Virginia.
After conducting feasibility studies and working to better understand acceptable sound levels across the country, NASA's Commercial Supersonic Technology Project asked industry teams to submit design concepts for a piloted test aircraft that can fly at supersonic speeds, creating a supersonic "heartbeat" – a soft thump rather than the disruptive boom currently associated with supersonic flight.
"Developing, building and flight testing a quiet supersonic X-plane is the next logical step in our path to enabling the industry's decision to open supersonic travel for the flying public," said Jaiwon Shin, associate administrator for NASA's Aeronautics Research Mission.
Lockheed Martin will receive about $20 million over 17 months for QueSST preliminary design work. The Lockheed Martin team includes subcontractors GE Aviation of Cincinnati and Tri Models Inc. of Huntington Beach, California.
The company will develop baseline aircraft requirements and a preliminary aircraft design with specifications, and provide supporting documentation for concept formulation and planning. This documentation would be used to prepare for the detailed design, building and testing of the QueSST jet. Performance of this preliminary design also must undergo analytical and wind tunnel validation.
The detailed design and building of the QueSST aircraft, conducted under the NASA Aeronautics Research Mission Directorate's Integrated Aviation Systems Program, will fall under a future contract competition. In addition to design and building, this Low Boom Flight Demonstration (LBFD) phase of the project also will include validation of community response to the new, quieter supersonic design.
NASA's 10-year New Aviation Horizons initiative has the ambitious goals of reducing fuel use, emissions and noise through innovations in aircraft design, ground operations and the national air transportation system.
The New Aviation Horizons X-planes will typically be about half-scale of a production aircraft and likely are to be piloted. Design-and-build will take several years with aircraft starting their flight campaign around 2020, depending on funding.
For more information about NASA's aeronautics research, visit:
www.nasa.gov/aero
About three quarters of ISS astronauts experience changes in the structure and function of their eyes. An experiment on the space station called the “Fluid Shifts Study” is investigating these vision problems in space.
Visit http://science.nasa.gov/ for more.
http://www.nasa.gov/station
NASA is calling all space enthusiasts to send their artistic endeavors on a journey aboard NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer (OSIRIS-REx) spacecraft. This will be the first U.S. mission to collect a sample of an asteroid and return it to Earth for study.
OSIRIS-REx is scheduled to launch in September and travel to the asteroid Bennu. The #WeTheExplorers campaign invites the public to take part in this mission by expressing, through art, how the mission’s spirit of exploration is reflected in their own lives. Submitted works of art will be saved on a chip on the spacecraft. The spacecraft already carries a chip with more than 442,000 names submitted through the 2014 “Messages to Bennu” campaign.
“The development of the spacecraft and instruments has been a hugely creative process, where ultimately the canvas is the machined metal and composites preparing for launch in September,” said Jason Dworkin, OSIRIS-REx project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “It is fitting that this endeavor can inspire the public to express their creativity to be carried by OSIRIS-REx into space.”
A submission may take the form of a sketch, photograph, graphic, poem, song, short video or other creative or artistic expression that reflects what it means to be an explorer. Submissions will be accepted via Twitter and Instagram until March 20. For details on how to include your submission on the mission to Bennu, go to:
http://www.asteroidmission.org/WeTheExplorers
“Space exploration is an inherently creative activity,” said Dante Lauretta, principal investigator for OSIRIS-REx at the University of Arizona, Tucson. “We are inviting the world to join us on this great adventure by placing their art work on the OSIRIS-REx spacecraft, where it will stay in space for millennia.”
The spacecraft will voyage to the near-Earth asteroid Bennu to collect a sample of at least 60 grams (2.1 ounces) and return it to Earth for study. Scientists expect Bennu may hold clues to the origin of the solar system and the source of the water and organic molecules that may have made their way to Earth.
Goddard provides overall mission management, systems engineering and safety and mission assurance for OSIRIS-REx. The University of Arizona, Tucson leads the science team and observation planning and processing. Lockheed Martin Space Systems in Denver is building the spacecraft. OSIRIS-REx is the third mission in NASA's New Frontiers Program. NASA's Marshall Space Flight Center in Huntsville, Alabama, manages New Frontiers for the agency's Science Mission Directorate in Washington.
For more information on OSIRIS-Rex, visit:
http://www.nasa.gov/osiris-rex
The California Current System
This February 8, 2016 composite image reveals the complex distribution of phytoplankton in one of Earth’s eastern boundary upwelling systems — the California Current. Recent work suggests that our warming climate my be increasing the intensity of upwelling in such regions with possible repercussions for the species that comprise those ecosystems.
NASA’s OceanColor Web is supported by the Ocean Biology Processing Group (OBPG) at NASA’s Goddard Space Flight Center. Our responsibilities include the collection, processing, calibration, validation, archive and distribution of ocean-related products from a large number of operational, satellite-based remote-sensing missions providing ocean color, sea surface temperature and sea surface salinity data to the international research community since 1996.
Credit: NASA/Goddard/Suomin-NPP/VIIRS #California #nasagoddard #earth #ocean
Recent news articles have reported that “newly declassified” audiotapes reveal that Apollo 10 astronauts heard “outer-spacey” music as the spacecraft flew around the far side of the moon in 1969.
While listed as ‘confidential’ in 1969 at the height of the Space Race, Apollo 10 mission transcripts and audio have been publicly available since 1973. Since the Internet did not exist in the Apollo era, we have only recently provided digital files for some of those earlier missions. The Apollo 10 audio clips were uploaded in 2012, but the mission’s audio recordings have been available at the National Archives since the early 1970s.
As for the likely source of the sounds, Apollo 10 Lunar Module Pilot Gene Cernan told us on Monday, ‘I don’t remember that incident exciting me enough to take it seriously. It was probably just radio interference. Had we thought it was something other than that we would have briefed everyone after the flight. We never gave it another thought.’
If you’d like to listen to the audio file, it is available HERE (starting at 2:50).
The full transcript is available HERE.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
We do the coolest tests here! Check out the Boeing Commercial Crew CST-100 Starliner drop:
Engineers from NASA’s Langley Research Center in Hampton, Va., and Boeing dropped a full-scale test article of the company’s CST-100 Starliner into Langley’s 20-foot-deep Hydro Impact Basin at the Landing and Impact Research Facility. Although the spacecraft is designed to land on land, Boeing is testing the Starliner’s systems in water to ensure astronaut safety in the unlikely event of an emergency. This test happened Feb. 9, 2016.
Click on the link to the full article to see how NASA’s Langley Research Center is changing the way we conceptualize commercial flight!
Edwards AFB CA (SPX) Feb 19, 2016 NASA is researching ideas that could lead to developing an electric propulsion-powered aircraft that would be quieter, more efficient and environmentally friendly than today’s commuter aircraft. The proposed piloted experimental airplane is called Sceptor, short for the Scalable Convergent Electric Propulsion Technology and Operations Research. The concept involves removing the wing from a Full article
On 2/18/1930, 86 years ago, Clyde Tombaugh discovered #Pluto. Happy Anniversary, buddy, we should have sent flowers. Hope you’re happy with #NewHorizons instead!
It’s incredible what humans can do on and off of our planet. Here is a view from the International Space Station taken by Engineer and NASA Astronaut, Colonel Tim Kopra.
Doha, Bahrain – manmade EarthArt.
February 7, 2016.
Credit: NASA Astronaut Tim Kopra’s Twitter Account
Check out what goes on at our Hydro Impact Basin Facility at the NASA Langley Research Center! This steel structure was once our Lunar Landing Research Facility for the Apollo missions.
Commercial Crew Partner Boeing Tests Starliner Spacecraft
Engineers from NASA’s Langley Research Center in Hampton, Virginia, and Boeing dropped a full-scale test article of the company’s CST-100 Starliner into Langley’s 20-foot-deep Hydro Impact Basin. Although the spacecraft is designed to land on land, Boeing is testing the Starliner’s systems in water to ensure astronaut safety in the unlikely event of an emergency during launch or ascent. Testing allows engineers to understand the performance of the spacecraft when it hits the water, how it will right itself and how to handle rescue and recovery operations. The test is part of the qualification phase of testing and evaluation for the Starliner system to ensure it is ready to carry astronauts to and from the International Space Station.
Image Credit: NASA/David C. Bowman
After years of preparatory studies, we are formally starting an astrophysics mission designed to help unlock the secrets of the universe.
With a view 100 times bigger than that of our Hubble Space Telescope, WFIRST will help unravel the secrets of dark energy and dark matter, and explore the evolution of the cosmos. It will also help us discover new worlds and advance the search for planets suitable for life.
WFIRST is slated to launch in the mid-2020s. The observatory will begin operations after traveling about one million miles from Earth, in a direction directly opposite the sun.
Telescopes usually come in two different “flavors” - you have really big, powerful telescopes, but those telescopes only see a tiny part of the sky. Or, telescopes are smaller and so they lack that power, but they can see big parts of the sky. WFIRST is the best of worlds.
No matter how good a telescope you build, it’s always going to have some residual errors. WFIRST will be the first time that we’re going to fly an instrument that contains special mirrors that will allow us to correct for errors in the telescope. This has never been done in space before!
Employing multiple techniques, astronomers will also use WFIRST to track how dark energy and dark matter have affected the evolution of our universe. Dark energy is a mysterious, negative pressure that has been speeding up the expansion of the universe. Dark matter is invisible material that makes up most of the matter in our universe.
Single WFIRST images will contain over a million galaxies! We can’t categorize and catalogue those galaxies on our own, which is where citizen science comes in. This allows interested people in the general public to solve scientific problems.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Maybe NASA Astronomer, @michellethaller , can spread some ‘light’ on this topic. She has spent years studying binary star systems!
Isn’t it beautiful two suns setting over the horizon.
Voyager 2 Photograph of Jupiter
A photo of Jupiter. Took by Voyager with VGISS on July 02, 1979 at 06:01:35. Detail page on OPUS database.
February 12, 1969 (5 months, 4 days before the launch of the Apollo 11 Spacecraft)
@nasa @nasahistory