Dive into your creative stream
I forgot to post this earlier but ORION IS THAT YOU FROM THE TRANSFORMERS ONE MOVIE??
Yandere Orion Black headcanon.(Sirius Black's father.)
YANDERE ORION BLACK X READER
☕️he was a purist like everyone in his family believing only pure bloods were the best wizards / witches.
☕️when you both met you met at the ministry of magic. He didn’t want to be near you at all. You made him feel things that he never felt before and it scared him.
☕️he eventually gets to know you and then he is glued to you. He knows everything about you even things you never knew about yourself .
☕️loves coffee to the point that he drinks it without realising it and stays up late. Sketching you or writing about you in his journal.
☕️would make your parents agree to you marrying him without you knowing.
☕️when you get married he showers you in gifts it’s the most purest wedding ever. Only pure bloods are allowed to come and everything is black and green.
☕️keeps you locked in the house you have the full house to discover no need to leave…
☕️he askes that you just be ready for him when he gets home so he can relax with you rubbing his shoulders or him venting to you about work .
☕️try and leave and he will take away the privilege of the full house and you will stay in one room. He will only deliver your meals and leave you until you beg for him to spend time with you.
☕️he wants children he loves the idea of having mini Jim’s and yous running around.
☕️plus it will help with the pure bloods going through yours and his children.
☕️he won’t join the dark lord if you don’t want him too however if the dark lord threatens you and his children he will join.
☕️possessive and obsessive yandere .
☕️one of the worst to have because it will only be him and your children that keep you company.
Thank you for this request ❤️❤️
I know I dont usually reblog things but LOOK! ORION! I LOVE ORION!
I'm wondering now how the relationship between Frisk and Orion would be like in your au.
Orion in this point would be kinda used to another human around him, I guess, even if he would be kinda grumpy about being a great uncle.
It would be funny if Orion, when he met them, being like: "Ugh, another one?" and then after just a couple of weeks, he is seen sleeping with Frisk in the couch or something like that.
And Starlo would tease him about this saying things like: "Age really softens the soul, uh?". And Orion being a grumpy mess trying to deny the affection he has with Frisk.
Yeah, Orion is the great uncle who pretends to be grumpy over having another human around, but secretly loves it. Similar to how he was when Clover first came around LOL. He definitely takes naps with Frisk on the couch and cuts up their corn for them at dinner, and of course Starlo teases him for it. I've gone on record saying Clover is one of the few people Orion's outwardly affectionate towards (in his own grumpy Orion way) and I think Frisk would quickly also become that!
Bonus sketch for the Starlo and Frisk comic I posted in December! I originally had a page with the Sunnysides but I cut it for space and time LOL. Sorry if it's unreadable, I sketch like a madman
ref sheet time
took a picture of the sirius star last night and this is what I got. we were doing an astrology thig at guides and Sirius was out, and Orion, Mars, Regulus, Jupiter and another planet but I forgor 😓
everytime someone said sirius my mind instantly went to Sirius Black
the obsession is taking over
everyone was calling it the dico star
Optimus Prime - Orion Pax
Alter ego re-design. I think I'll name them Orion 🖤🔪
Feel free to ask me questions about them!
Sweater Sparkling~
Cuties.
A gift for oneshallstand. The mun likes Oppy ‘n ‘Lita.
The entirety of Orion's defiant two-year-old stage.
Here's sparkling Orion and D-16 as they appear in my fanfiction, Remedy. The story is complete now, but I still love drawing little Orion and Ratchet, so I'll be posting more of those pictures soon.
Fun Fact: Orion's colours are purposefully faded, due to his state during the course of the story.
http://www.fanfiction.net/s/8481642/1/Remedy
Ratchet and sparkling Orion.
This is from a fanfiction I am currently writting, named 'Remedy'. I just posted the tenth chapter, and because I made people wait so long, it is almost three times the length of my normal chapters. There are OCs, but Ratchet and Orion are the most important characters. Clicking the photo will bring you to the first chapter. I hope the story is enjoyed!
Bogotá 2014 #metallica #thelordsofsummer #metallicabyrequest #roberttrujillo #deathmagnetic #masterofpuppets #orion
First Sighting of the constellation Orion at the end of summer 2017, Maplewood, NJ, USA (40.7739d N, 74.2739dW), 5:20 AM EDT (10:20 hr UTC), 9/9/2017. Notebook sketch with Pigma graphic pen on paper, approx. 18.7 x 26.7 cm. Original sketch is black ink on white paper. The digital image here is color-inverted white on black.
Chances are, if you have ever spent time in a school or office building, you have experienced a fire drill. Well, astronauts practice emergency drills, too!
Since we began sending astronauts to space, we have used systems and drills to practice moving people safely away from the launch pad in the unlikely event of an emergency during the countdown to launch.
Early Mercury and Gemini programs in the 1960s used a launch escape system in the form of a solid rocket motor that could pull the astronauts to safety in the event of an emergency. However, this system only accounted for the astronauts, and not other personnel at the launch pad. NASA’s emergency systems have since improved substantially to include everyone.
Artemis II will be NASA’s first mission with crew aboard the SLS (Space Launch System) rocket and Orion spacecraft. Artemis II will fly around the Moon and come back to Earth. Beginning with the Artemis II mission, we will use a track cable to connect the mobile launcher — the ground structure that supports the rocket before and during launch — to the perimeter of the launch pad. Picture a gondola ski lift beginning at the top of the rocket and ending all the way down to the ground. In case of an emergency, astronauts and support crews move from the capsule into the crew access arm, climb into one of four baskets waiting for them, and ride down to the ground.
There, members of the Pad Rescue team are ready to scoop the astronauts up and whisk them to safety. Think of the Pad Rescue team as spaceflight knights in shining armor. Except instead of saving crew from a fire breathing dragon, they are whisking the astronauts away from a fully loaded skyscraper-sized rocket that’s getting ready to lift off.
The Artemis II mission will also introduce several new ground systems for the first time – including the new and improved braking system similar to what roller coasters use! Though no NASA mission to date has needed to use its ground-based emergency system during launch countdown, those safety measures are still in place and maintained as a top priority.
So the next time you practice a fire drill at school or at work, remember that these emergency procedures are important for everyone to stay safe — even astronauts.
Make sure to follow us on Tumblr for your regular dose of space!
And that’s a wrap! Thank you for all the great questions. We hope you learned a little bit about what it takes to work in mission control as a flight director.
If you’re hungry for more, you can read the latest installment of our First Woman graphic novel series, where fictional character Commander Callie Rodriguez embarks on the next phase of her trailblazing journey and leaves the Moon to take the helm at Mission Control.
Keep up with the flight directors, the Space Station, and the Artemis missions at the links below.
Flight directors: X
Artemis: Facebook: Facebook, Instagram, X
Space Station: Facebook, Instagram, X (@Space_Station), X( @ISS_Research)
Make sure to follow us on Tumblr for your regular dose of space!
Anonymous asked:
What is the best about being mission control?
How did you get to where you are now? and di you always know that this is where you wanted to end up?
On this day last year, the Artemis I rocket and spacecraft lit up the sky and embarked on the revolutionary mission to the Moon and back. The first integrated flight test of the rocket and spacecraft continued for 25.5 days, validating NASA’s deep exploration systems and setting the stage for humanity’s return to the lunar surface.
On Nov. 16, 2022, the Space Launch System (SLS) rocket met or exceeded all expectations during its debut launch on Artemis I. The twin solid rocket booster motors responsible for producing more than 7 million pounds of thrust at liftoff reached their performance target, helping SLS and the Orion spacecraft reach a speed of about 4,000 mph in just over two minutes before the boosters separated.
Quite a few payloads caught a ride aboard the Orion spacecraft on the Artemis I mission: In addition to a number of small scientific satellites called CubeSats, a manikin named Commander Moonikin Campos sat in the commander’s seat. A Snoopy doll served as a zero-gravity indicator — something that floats inside the spacecraft to demonstrate microgravity.
During the mission, Orion performed two lunar flybys, coming within 80 miles of the lunar surface. At its farthest distance during the mission, Orion traveled nearly 270,000 miles from our home planet, more than 1,000 times farther than where the International Space Station orbits Earth. This surpassed the record for distance traveled by a spacecraft designed to carry humans, previously set during Apollo 13.
The Orion spacecraft arrived back home to planet Earth on Dec. 11, 2022. During re-entry, Orion endured temperatures about half as hot as the surface of the Sun at about 5,000 degrees Fahrenheit. Within about 20 minutes, Orion slowed from nearly 25,000 mph to about 20 mph for its parachute-assisted splashdown.
Recovery teams successfully retrieved the spacecraft and delivered it back to NASA’s Kennedy Space Center for de-servicing operations, which included removing the payloads (like Snoopy and Commander Moonikin Campos) and analyzing the heat shield.
With the Artemis I mission under our belt, we look ahead to Artemis II — our first crewed mission to the Moon in over 50 years. Four astronauts will fly around the Moon inside Orion, practicing piloting the spacecraft and validating the spacecraft’s life support systems. The Artemis II crew includes: NASA astronauts Reid Wiseman, Victor Glover, and Christina Koch, and CSA astronaut Jeremy Hansen.
As we look ahead to Artemis II, we build upon the incredible success of the Artemis I mission and recognize the hard work and achievements of the entire Artemis team. Go Artemis!
Make sure to follow us on Tumblr for your regular dose of space!
In the latest installment of our First Woman graphic novel series, we see Commander Callie Rodriguez embark on the next phase of her trailblazing journey, as she leaves the Moon to take the helm at Mission Control.
Flight directors work in Mission Control to oversee operations of the International Space Station and Artemis missions to the Moon. They have a unique, overarching perspective focused on integration between all the systems that make a mission a success – flight directors have to learn a little about a lot.
Diane Dailey and Chloe Mehring were selected as flight directors in 2021. They’ll be taking your questions about what it’s like to lead teams of flight controllers, engineers, and countless professionals, both agencywide and internationally, in an Answer Time session on Nov. 28, 2023, from noon to 1 p.m. EST (9-10 a.m. PST) here on our Tumblr!
Like Callie, how did their unique backgrounds and previous experience, prepare them for this role? What are they excited about as we return to the Moon?
🚨 Ask your questions now by visiting https://nasa.tumblr.com/ask.
Diane Dailey started her career at NASA in 2006 in the space station Environmental Control and Life Support Systems (ECLSS) group. As an ECLSS flight controller, she logged more than 1,700 hours of console time, supported 10 space shuttle missions, and led the ECLSS team. She transitioned to the Integration and System Engineering (ISE) group, where she was the lead flight controller for the 10th and 21st Commercial Resupply Services missions for SpaceX. In addition, she was the ISE lead for NASA’s SpaceX Demo-1 and Demo-2 crew spacecraft test flights. Dailey was also a capsule communicator (Capcom) controller and instructor.
She was selected as a flight director in 2021 and chose her call sign of “Horizon Flight” during her first shift in November of that year. She has since served as the Lead Flight director for the ISS Expedition 68, led the development of a contingency spacewalk, and led a spacewalk in June to install a new solar array on the space station. She is currently working on development of the upcoming Artemis II mission and the Human Lander Systems which will return humanity to the moon. Dailey was raised in Lubbock, Texas, and graduated from Texas A&M University in College Station with a bachelor’s degree in biomedical engineering. She is married and a mother of two. She enjoys cooking, traveling, and spending time outdoors.
Chloe Mehring started her NASA career in 2008 in the Flight Operations’ propulsion systems group and supported 11 space shuttle missions. She served as propulsion support officer for Exploration Flight Test-1, the first test flight of the Orion spacecraft that will be used for Artemis missions to the Moon. Mehring was also a lead NASA propulsion officer for SpaceX’s Crew Dragon spacecraft and served as backup lead for the Boeing Starliner spacecraft. She was accepted into the 2021 Flight Director class and worked her first shift in February 2022, taking on the call sign “Lion Flight”. Since becoming certified, she has worked over 100 shifts, lead the NG-17 cargo resupply mission team, and executed two United States spacewalks within 10 days of each other. She became certified as a Boeing Starliner Flight Director, sat console for the unmanned test flight in May 2022 (OFT-2) and will be leading the undock team for the first crewed mission on Starliner in the spring of next year. She originally is from Mifflinville, Pennsylvania, and graduated with a bachelor’s degree in aerospace engineering from The Pennsylvania State University in State College. She is a wife, a mom to one boy, and she enjoys fitness, cooking and gardening.
Today, we revealed the four astronauts who will fly around the Moon during the Artemis II mission, scheduled to launch in 2024. Get to know them:
Meet the first member of our Artemis II crew: mission specialist Christina Koch. Koch visited the International Space Station in 2019, where she participated in the first all-woman spacewalk with Jessica Meir. She began her NASA career as an electrical engineer at Goddard Space Flight Center.
Representing the Canadian Space Agency is Jeremy Hansen from London, Ontario. Col. Hansen was a fighter pilot with Canadian Armed Forces before joining the Canadian Space Agency, and currently works with NASA on astronaut training and mission operations. This will be Col. Hansen’s first mission in space.
Victor Glover is our Artemis II pilot. Glover is part of our 2013 class of NASA astronauts and was the pilot for NASA’s SpaceX Crew-1 mission. He’s logged 3,000 flight hours in more than 40 different aircraft.
...and rounding out our Artemis II crew: mission commander Reid Wiseman. Wiseman lived and worked aboard the International Space Station as a flight engineer in 2014. He also commanded the undersea research mission NEEMO21, and most recently served as Chief of the NASA astronauts.
Make sure to follow us on Tumblr for your regular dose of space!
The Artemis I mission was the first integrated test of the Orion spacecraft, the Space Launch System (SLS) rocket, and Exploration Ground Systems at NASA’s Kennedy Space Center in Florida. We’ll use these deep space exploration systems on future Artemis missions to send astronauts to the Moon and prepare for our next giant leap: sending the first humans to Mars.
Take a visual journey through the mission, starting from launch, to lunar orbit, to splashdown.
The SLS rocket carrying the Orion spacecraft launched on Nov. 16, 2022, from Launch Complex 39B at NASA’s Kennedy Space Center in Florida. The world’s most powerful rocket performed with precision, meeting or exceeding all expectations during its debut launch on Artemis I.
Following the successful launch of Artemis I, Launch Director Charlie Blackwell-Thompson congratulates the launch team.
“The harder the climb, the better the view,” she said. “We showed the space coast tonight what a beautiful view it is.”
On Orion’s first day of flight, a camera on the tip of one of Orion’s solar arrays captured this image of Earth.
On the third day of the mission, Artemis I engineers activated the Callisto payload, a technology demonstration developed by Lockheed Martin, Amazon, and Cisco that tested a digital voice assistant and video conferencing capabilities in a deep space environment. In the image, Commander Moonikin Campos occupies the commander’s seat inside the spacecraft. The Moonikin is wearing an Orion Crew Survival System suit, the same spacesuit that Artemis astronauts will use during launch, entry, and other dynamic phases of their missions. Campos is also equipped with sensors that recorded acceleration and vibration data throughout the mission that will help NASA protect astronauts during Artemis II. The Moonikin was one of three “passengers” that flew aboard Orion. Two female-bodied model human torsos, called phantoms, were aboard. Zohar and Helga, named by the Israel Space Agency (ISA) and the German Aerospace Center (DLR) respectively, supported the Matroshka AstroRad Radiation Experiment (MARE), an experiment to provide data on radiation levels during lunar missions. Snoopy, wearing a mock orange spacesuit, also can be seen floating in the background. The character served as the zero-gravity indicator during the mission, providing a visual signifier that Orion is in space.
A portion of the far side of the Moon looms large in this image taken by a camera on the tip of one of Orion’s solar arrays on the sixth day of the mission.
The Orion spacecraft captured some of the closest photos of the Moon from a spacecraft built for humans since the Apollo era — about 80 miles (128 km) above the lunar surface. This photo was taken using Orion’s optical navigational system, which captures black-and-white images of the Earth and Moon in different phases and distances.
Orion entered a distant retrograde orbit around the Moon almost two weeks into the mission. The orbit is “distant” in the sense that it’s at a high altitude approximately 50,000 miles (80,467 km) from the surface of the Moon. Orion broke the record for farthest distance of a spacecraft designed to carry humans to deep space and safely return them to Earth, reaching a maximum distance of 268,563 miles (432,210 km).
On the 20th day of the mission, the spacecraft made its second and final close approach to the Moon flying 79.2 miles (127.5 km) above the lunar surface to harness the Moon’s gravity and accelerate for the journey back to Earth.
Cameras mounted on the crew module of the Orion spacecraft captured these views of the Moon’s surface before its return powered flyby burn.
After passing behind the far side of the Moon on Flight Day 20, Orion powered a flyby burn that lasted approximately 3 minutes and 27 seconds to head home. Shortly after the burn was complete, the Orion spacecraft captured these views of the Moon and Earth, which appears as a distant crescent.
Prior to entering the Earth’s atmosphere, Orion’s crew module separated from its service module, which is the propulsive powerhouse provided by ESA (European Space Agency). During re-entry, Orion endured temperatures about half as hot as the surface of the Sun at about 5,000 degrees Fahrenheit (2,760 degrees Celsius). Within about 20 minutes, Orion slowed from nearly 25,000 mph (40,236 kph) to about 20 mph (32 kph) for its parachute-assisted splashdown.
On Dec. 11, the Orion spacecraft splashed down in the Pacific Ocean off the coast of California after traveling 1.4 million miles (2.3 million km) over a total of 25.5 days in space. Teams are in the process of returning Orion to Kennedy Space Center in Florida. Once at Kennedy, teams will open the hatch and unload several payloads, including Commander Moonikin Campos, the space biology experiments, Snoopy, and the official flight kit. Next, the capsule and its heat shield will undergo testing and analysis over the course of several months.
Make sure to follow us on Tumblr for your regular dose of space!
On Nov. 16, 2022, the Artemis I mission officially began with the launch of the Orion spacecraft atop the Space Launch System rocket. The rocket and spacecraft lifted off from historic Launch Complex 39B at NASA’s Kennedy Space Center in Florida.
Now, the Orion spacecraft is about halfway through its journey around the Moon. Although the spacecraft is uncrewed, the Artemis I mission prepares us for future missions with astronauts, starting with Artemis II.
Stay up-to-date with the mission with the latest full-resolution images, mission updates, on-demand and live video.
Find full-resolution images from the Orion spacecraft as they are released here.
Launch imagery can be found here. When Orion splashes down in the Pacific Ocean on Dec. 11, the images will be available here, as well!
This playlist contains informational videos, as well as upcoming and past live events, about Artemis I.
You can watch a livestream of the Artemis I mission here. (Just a note: the livestream may cut off during moments when the Orion team needs higher bandwidth for activities.)
Keep yourself updated on the upcoming broadcasts of Artemis milestones with the NASA TV schedule.
Our Artemis I Tracker uses live telemetry data streamed directly from Mission Control Center in Houston to show Orion position, attitude, solar array positions, and thruster firings throughout the mission.
“Eyes on the Solar System” shows Orion's position along the Artemis I trajectory and in relation to other NASA spacecraft and objects in the solar system.
“DSN Now” shows which antenna on Earth’s Deep Space Network is communicating with Orion.
Read up on where Orion is and what’s next in the Artemis I mission with the Mission Blog.
Thank you so much for following with us on this historic mission. Go Artemis!
Make sure to follow us on Tumblr for your regular dose of space!
We are going to the Moon!
At 1:47 a.m. EST on Nov. 16, 2022, our Orion spacecraft launched aboard the Space Launch System (SLS) rocket from historic Launch Complex 39B at NASA’s Kennedy Space Center in Florida on a path to the Moon, officially beginning the Artemis I mission.
This mission is the first integrated test of NASA’s deep space exploration systems: the Orion spacecraft, the SLS rocket, and Kennedy ground systems. This is the very first time this rocket and spacecraft have flown together, and it’s the first of many Artemis missions to the Moon. Artemis I is uncrewed, but it lays the groundwork for increasingly complex missions that will land humans on the lunar surface, including the first woman and the first person of color to do so.
With Artemis, we will build a long-term human presence on the Moon and prepare humanity for future exploration plans to Mars and beyond.
See more photos of Artemis I on our Flickr.
Make sure to follow us on Tumblr for your regular dose of space!
When NASA astronauts return to the Moon through Artemis, they will benefit from decades of innovation, research, and technological advancements. We’ll establish long-term lunar science and exploration capabilities at the Moon and inspire a new generation of explorers—the Artemis Generation.
Meet the Space Launch System rocket, or SLS. This next-generation super heavy-lift rocket was designed to send astronauts and their cargo farther into deep space than any rocket we’ve ever built. During liftoff, SLS will produce 8.8 million pounds (4 million kg) of maximum thrust, 15 percent more than the Saturn V rocket.
SLS will launch the Orion spacecraft into deep space. Orion is the only spacecraft capable of human deep space flight and high-speed return to Earth from the vicinity of the Moon. More than just a crew module, Orion has a launch abort system to keep astronauts safe if an emergency happens during launch, and a European-built service module, which is the powerhouse that fuels and propels Orion and keeps astronauts alive with water, oxygen, power, and temperature control.
Orion and SLS will launch from NASA’s Kennedy Space Center in Florida with help from Exploration Ground Systems (EGS) teams. EGS operates the systems and facilities necessary to process and launch rockets and spacecraft during assembly, transport, launch, and recovery.
The knowledge we've gained while operating the International Space Station has opened new opportunities for long-term exploration of the Moon's surface. Gateway, a vital component of our Artemis plans, is a Moon-orbiting space station that will serve as a staging post for human expeditions to the lunar surface. Crewed and uncrewed landers that dock to Gateway will be able to transport crew, cargo, and scientific equipment to the surface.
Our astronauts will need a place to live and work on the lunar surface. Artemis Base Camp, our first-ever lunar science base, will include a habitat that can house multiple astronauts and a camper van-style vehicle to support long-distance missions across the Moon’s surface. Apollo astronauts could only stay on the lunar surface for a short while. But as the Artemis base camp evolves, the goal is to allow crew to stay at the lunar surface for up to two months at a time.
The Apollo Program gave humanity its first experience traveling to a foreign world. Now, America and the world are ready for the next era of space exploration. NASA plans to send the first woman and first person of color to the lunar surface and inspire the next generation of explorers.
Our next adventure starts when SLS and Orion roar off the launch pad with Artemis I. Together with commercial and international partners, NASA will establish a long-term presence on the Moon to prepare for missions to Mars. Everything we’ve learned, and everything we will discover, will prepare us to take the next giant leap: sending the first astronauts to Mars.
Make sure to follow us on Tumblr for your regular dose of space!
On November 14, NASA is set to launch the uncrewed Artemis I flight test to the Moon and back. Artemis I is the first integrated flight test of the Space Launch System (SLS) rocket, the Orion spacecraft, and Exploration Ground Systems at NASA’s Kennedy Space Center in Florida. These are the same systems that will bring future Artemis astronauts to the Moon.
Standing 322 feet (98 meters) tall, the SLS rocket comprises of a core stage, an upper stage, two solid boosters, and four RS-25 engines. The SLS rocket is the most powerful rocket in the world, able to carry 59,500 pounds (27 metric tons) of payloads to deep space — more than any other vehicle. With its unprecedented power, SLS is the only rocket that can send the Orion spacecraft, astronauts, and cargo directly to the Moon on a single mission.
Before launch, Artemis I has some big help: the Vehicle Assembly Building (VAB) at KSC is the largest single-story building in the world. The VAB was constructed for the assembly of the Apollo/Saturn V Moon rocket, and this is where the SLS rocket is assembled, maintained, and integrated with the Orion spacecraft.
The mobile launcher is used to assemble, process, and launch the SLS rocket and Orion spacecraft. The massive structure consists of a two-story base and a tower equipped with a number of connection lines to provide the rocket and spacecraft with power, communications, coolant, and fuel prior to launch.
Capable of carrying 18 million pounds (8.2 million kg) and the size of a baseball infield, crawler-transporter 2 will transport SLS and Orion the 4.2 miles (6.8 km) to Launch Pad 39B. This historic launch pad was where the Apollo 10 mission lifted off from on May 18, 1969, to rehearse the first Moon landing.
During the launch, SLS will generate around 8.8 million pounds (~4.0 million kg) of thrust, propelling the Orion spacecraft into Earth’s orbit. Then, Orion will perform a Trans Lunar Injection to begin the path to the Moon. The spacecraft will orbit the Moon, traveling 40,000 miles beyond the far side of the Moon — farther than any human-rated spacecraft has ever flown.
The Orion spacecraft is designed to carry astronauts on deep space missions farther than ever before. Orion contains the habitable volume of about two minivans, enough living space for four people for up to 21 days. Future astronauts will be able to prepare food, exercise, and yes, have a bathroom. Orion also has a launch abort system to keep astronauts safe if an emergency happens during launch, and a European-built service module that fuels and propels the spacecraft.
While the Artemis I flight test is uncrewed, the Orion spacecraft will not be empty: there will be three manikins aboard the vehicle. Commander Moonikin Campos will be sitting in the commander’s seat, collecting data on the vibrations and accelerations future astronauts will experience on the journey to the Moon. He is joined with two phantom torsos, Helga and Zohar, in a partnership with the German Aerospace Center and Israeli Space Agency to test a radiation protection vest.
A host of shoebox-sized satellites called CubeSats help enable science and technology experiments that could enhance our understanding of deep space travel and the Moon while providing critical information for future Artemis missions.
At the end of the four-week mission, the Orion spacecraft will return to Earth. Orion will travel at 25,000 mph (40,000 km per hour) before slowing down to 300 mph (480 km per hour) once it enters the Earth’s atmosphere. After the parachutes deploy, the spacecraft will glide in at approximately 20 mph (32 km per hour) before splashdown about 60 miles (100 km) off the coast of California. NASA’s recovery team and the U.S. Navy will retrieve the Orion spacecraft from the Pacific Ocean.
With the ultimate goal of establishing a long-term presence on the Moon, Artemis I is a critical step as NASA prepares to send humans to Mars and beyond.
Make sure to follow us on Tumblr for your regular dose of space!
We’re getting ready to launch Artemis I, the first test flight of the rocket and spacecraft that will take future astronauts to the Moon! As we prepare for the lunar voyage of the Space Launch System (SLS) rocket and Orion spacecraft launching as early as Aug. 29, 2022, we would like you to share your excitement with us. Share all types of Moon-inspired content with us with the hashtag #NASAMoonSnap, and we will choose some entries to share on our social media platforms and during the launch broadcast. Get creative! We’re looking for Moon paintings, Moon poetry, Moon pottery, Moon latte foam art — the sky is not the limit.
Since we have the full Moon coming up on Aug. 11, we wanted to share our handy dandy Moon photography guide and inspire you with some of our NASA imagery experts’ stories on capturing the Moon.
"The first rollout of the SLS rocket with the Orion spacecraft aboard was a really exciting moment to capture. I was photographing at Kennedy Space Center in an area where many of the employees that had worked on different parts of the SLS were watching. It was so great to hear some of their stories and see their pride in helping to build this amazing rocket and spacecraft. Once the mobile launcher with SLS passed the crowds to head toward the launchpad, people began to line up in their cars to leave. I decided to stick around and try to get a closer image of the Moon with SLS. It was fairly dark by the time I made this image, so there isn’t any detail in the moon, but it’s still moving to see them next to one another and know that SLS will be closer to the Moon than Earth very soon, and will one day enable humans to land on the lunar surface again!" — Aubrey Gemignani, NASA contract Photo Archivist/Photographer, NASA Headquarters
“I set up this shot when I saw the Moon was lined up perfectly with the X-1E in front of the main entrance to Armstrong Flight Research Center one morning last year. What captured my eye about this scene was that it showcased the past and the future of NASA in one image. The X-1 was a key piece of early NACA/NASA history, and it is pointing to the Moon showing us where we are going next with Artemis. I still remember walking around on my first day at NASA and seeing all the places where history was made. I was in awe as I walked these hallowed grounds. I know that there is still a great deal of history to be written here as we strive to go higher, further and faster and I’m glad that I get to be here to document it.” — Joshua Fisher, Photographer, NASA’s Armstrong Flight Research Center
“While out capturing images of the Moon, the memories of my first day as a photographer for NASA came flooding back. One of my first memories is going to the exhibits department and getting to hold an actual Moon rock sample. That day changed my perception of the Moon forever. That moment made the Moon more than just something in the sky. It became tangible and real, and my part in all of this became clear. The honor and privilege I feel everyday is overwhelming.” — Jef Janis, Still Imaging Specialist, NASA’s Glenn Research Center
“When I can, I like my Moon photos to have a sense of place. The trick is finding a shooting position and a landmark that will fit in with the Moon’s very stringent plans for rising. I went out to shoot the Sturgeon Moon, which was also a rare blue moon, last August. As I was shooting the moonrise from the riverbank in downtown New Orleans, I was lucky to have one of the city’s iconic riverboats turn a bend and head upriver to pass beneath the Moon. Happily the river was low and I was able to scramble down the high bank to reduce the vertical distance between the quickly rising moon and the slowly passing riverboat.” — Michael DeMocker, Photographer, NASA’s Michoud Assembly Facility
“I was excited to try to capture a waning crescent Moon at dawn, even though it was late February, 20 degrees Fahrenheit and 6:30 in the morning…Nonetheless, I decided to photograph on-site at Lewis Field, and ended up using my telephoto lens to really zoom in on the Moon. In a race against the sunrise and the Moon disappearing, I was able to capture a cool shot of the Moon with a couple planes making an appearance as well (The Cleveland Hopkins Airport is right next door). Although is it me, or does one of the planes look like a rocket taking off…?” — Jordan Salkin, Scientific Imaging Specialist, NASA’s Glenn Research Center
“I have worked at NASA’s Glenn Research Center since 1990 and have enjoyed every second doing what I do to support NASA’s mission. On my first day back to work onsite after 22 months of telework I saw this beautiful sunrise with the snow, the Moon, and the hangar. It felt good to be at work seeing the landscape I was so used to seeing. I had to take these pictures to share with my colleagues. ” — Jeffrey F. Abbott, Media Support Specialist, NASA’s Glenn Research Center
“In creating this Moon image, I almost felt pressured to find the ‘perfect location.’ The more that I thought about that prospect, the more I was drawn to using only natural elements, in my own environment. I wanted to find an image in my own backyard. This image was captured just as the Sun dropped below the horizon. I had a very short window of time when these colors would be possible. Two minutes earlier or later would have produced a totally different image. The almost abstract lines of a Maple tree in the earliest stages of budding seemed to be in concert with the waxing crescent Moon, both preparing for full bloom. Nature on display in its simplicity.” — Marvin Smith, Still Imaging Specialist Lead, NASA’s Glenn Research Center
“The lighthouse in Lorain, Ohio, has been photographed by amateur and professional photographers for decades, but I have never photographed it before. When I calculated that the path of the Moon was going to go over and past the lighthouse with a reflection over the water, I decided to give it a try. I encountered four other photographers on the same pier with me that early morning. They were huddled in the middle of the pier and I was at the end. I think I got the best photo.” — Quentin Schwinn, Scientific Photographer, NASA’s Glenn Research Center
Make sure to follow us on Tumblr for your regular dose of space!