TumbleRead

Dive into your creative stream

Gamma Ray - Blog Posts

5 years ago

Five Record-Setting Gamma-ray Bursts!

For 10 years, our Fermi Gamma-ray Space Telescope has scanned the sky for gamma-ray bursts (GRBs), the universe’s most luminous explosions!

image

Most GRBs occur when some types of massive stars run out of fuel and collapse to create new black holes. Others happen when two neutron stars, superdense remnants of stellar explosions, merge. Both kinds of cataclysmic events create jets of particles that move near the speed of light.

A new catalog of the highest-energy blasts provides scientists with fresh insights into how they work. Below are five record-setting events from the catalog that have helped scientists learn more about GRBs:

1. Super-short burst in Boötes!

image

The short burst 081102B, which occurred in the constellation Boötes on Nov. 2, 2008, is the briefest LAT-detected GRB, lasting just one-tenth of a second!

2. Long-lived burst!

image

Long-lived burst 160623A, spotted on June 23, 2016, in the constellation Cygnus, kept shining for almost 10 hours at LAT energies — the longest burst in the catalog.

For both long and short bursts, the high-energy gamma-ray emission lasts longer than the low-energy emission and happens later.

3. Highest energy gamma-rays!

image

The highest-energy individual gamma ray detected by Fermi’s LAT reached 94 billion electron volts (GeV) and traveled 3.8 billion light-years from the constellation Leo. It was emitted by 130427A, which also holds the record for the most gamma rays — 17 — with energies above 10 GeV.

4. In a constellation far, far away!

image

The farthest known GRB occurred 12.2 billion light-years away in the constellation Carina. Called 080916C, researchers calculate the explosion contained the power of 9,000 supernovae.

5. Probing the physics of our cosmos!

image

The known distance to 090510 helped test Einstein’s theory that the fabric of space-time is smooth and continuous. Fermi detected both a high-energy and a low-energy gamma ray at nearly the same instant. Having traveled the same distance in the same amount of time, they showed that all light, no matter its energy, moves at the same speed through the vacuum of space.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
5 years ago

5 of Your Fermi Gamma-ray Space Telescope Questions Answered

The Fermi Gamma-ray Space Telescope is a satellite in low-Earth orbit that detects gamma rays from exotic objects like black holes, neutron stars and fast-moving jets of hot gas. For 11 years Fermi has seen some of the highest-energy bursts of light in the universe and is helping scientists understand where gamma rays come from.

Confused? Don’t be! We get a ton of questions about Fermi and figured we'd take a moment to answer a few of them here.

1. Who was this Fermi guy?

The Fermi telescope was named after Enrico Fermi in recognition of his work on how the tiny particles in space become accelerated by cosmic objects, which is crucial to understanding many of the objects that his namesake satellite studies.

Enrico Fermi was an Italian physicist and Nobel Prize winner (in 1938) who immigrated to the United States to be a professor of physics at Columbia University, later moving to the University of Chicago.

image

Original image courtesy Argonne National Laboratory

Over the course of his career, Fermi was involved in many scientific endeavors, including the Manhattan Project, quantum theory and nuclear and particle physics. He even engineered the first-ever atomic reactor in an abandoned squash court (squash is the older, English kind of racquetball) at the University of Chicago.

There are a number of other things named after Fermi, too: Fermilab, the Enrico Fermi Nuclear Generating Station, the Enrico Fermi Institute and more. (He’s kind of a big deal in the physics world.)

image

Fermi even had something to say about aliens! One day at lunch with his buddies, he wondered if extraterrestrial life existed outside our solar system, and if it did, why haven't we seen it yet? His short conversation with friends sparked decades of research into this idea and has become known as the Fermi Paradox — given the vastness of the universe, there is a high probability that alien civilizations exist out there, so they should have visited us by now.  

2. So, does the Fermi telescope look for extraterrestrial life?

No. Although both are named after Enrico Fermi, the Fermi telescope and the Fermi Paradox have nothing to do with one another.

image

Fermi does not look for aliens, extraterrestrial life or anything of the sort! If aliens were to come our way, Fermi would be no help in identifying them, and they might just slip right under Fermi’s nose. Unless, of course, those alien spacecraft were powered by processes that left behind traces of gamma rays.

image

Fermi detects gamma rays, the highest-energy form of light, which are often produced by events so far away the light can take billions of years to reach Earth. The satellite sees pulsars, active galaxies powered by supermassive black holes and the remnants of exploding stars. These are not your everyday stars, but the heavyweights of the universe. 

3. Does the telescope shoot gamma rays?

No. Fermi DETECTS gamma rays using its two instruments, the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM).

The LAT sees about one-fifth of the sky at a time and records gamma rays that are millions of times more energetic than visible light. The GBM detects lower-energy emissions, which has helped it identify more than 2,000 gamma-ray bursts – energetic explosions in galaxies extremely far away.

image

The highest-energy gamma ray from a gamma-ray burst was detected by Fermi’s LAT, and traveled 3.8 billion light-years to reach us from the constellation Leo.

4. Will gamma rays turn me into a superhero?

Nope. In movies and comic books, the hero has a tragic backstory and a brush with death, only to rise out of some radioactive accident stronger and more powerful than before. In reality, that much radiation would be lethal.

image

In fact, as a form of radiation, gamma rays are dangerous for living cells. If you were hit with a huge amount of gamma radiation, it could be deadly — it certainly wouldn’t be the beginning of your superhero career.

5. That sounds bad…does that mean if a gamma-ray burst hit Earth, it would wipe out the planet and destroy us all?

Thankfully, our lovely planet has an amazing protector from gamma radiation: an atmosphere. That is why the Fermi telescope is in orbit; it’s easier to detect gamma rays in space!

image

Gamma-ray bursts are so far away that they pose no threat to Earth. Fermi sees gamma-ray bursts because the flash of gamma rays they release briefly outshines their entire home galaxies, and can sometimes outshine everything in the gamma-ray sky.

image

If a habitable planet were too close to one of these explosions, it is possible that the jet emerging from the explosion could wipe out all life on that planet. However, the probability is extremely low that a gamma-ray burst would happen close enough to Earth to cause harm. These events tend to occur in very distant galaxies, so we’re well out of reach.

image

We hope that this has helped to clear up a few misconceptions about the Fermi Gamma-ray Space Telescope. It’s a fantastic satellite, studying the craziest extragalactic events and looking for clues to unravel the mysteries of our universe!

Now that you know the basics, you probably want to learn more! Follow the Fermi Gamma-ray Space Telescope on Twitter (@NASAFermi) or Facebook (@nasafermi), and check out more awesome stuff on our Fermi webpage.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.  


Tags
6 years ago

Things That Go Bump in the Gamma Rays

Some people watch scary movies because they like being startled. A bad guy jumps out from around a corner! A monster emerges from the shadows! Scientists experience surprises all the time, but they’re usually more excited than scared. Sometimes theories foreshadow new findings — like when there’s a dramatic swell in the movie soundtrack — but often, discoveries are truly unexpected. 

image

Scientists working with the Fermi Gamma-Ray Space Telescope have been jumping to study mysterious bumps in the gamma rays for a decade now. Gamma rays are the highest-energy form of light. Invisible to human eyes, they’re created by some of the most powerful and unusual events and objects in the universe. In celebration of Halloween, here are a few creepy gamma-ray findings from Fermi’s catalog.

image

Stellar Graveyards

If you were to walk through a cemetery at night, you’d expect to trip over headstones or grave markers. Maybe you’d worry about running into a ghost. If you could explore the stellar gravesite created when a star explodes as a supernova, you’d find a cloud of debris expanding into interstellar space. Some of the chemical elements in that debris, like gold and platinum, go on to create new stars and planets! Fermi found that supernova remnants IC 443 and W44 also accelerate mysterious cosmic rays, high-energy particles moving at nearly the speed of light. As the shockwave of the supernova expands, particles escape its magnetic field and interact with non-cosmic-ray particles to produce gamma rays. 

image

Ghost Particles

But the sources of cosmic rays aren’t the only particle mysteries Fermi studies. Just this July, Fermi teamed up with the IceCube Neutrino Observatory in Antarctica to discover the first source of neutrinos outside our galactic neighborhood. Neutrinos are particles that weigh almost nothing and rarely interact with anything. Around a trillion of them pass through you every second, ghost-like, without you noticing and then continue on their way. (But don’t worry, like a friendly ghost, they don’t harm you!) Fermi traced the neutrino IceCube detected back to a supermassive black hole in a distant galaxy. By the time it reached Earth, it had traveled for 3.7 billion years at almost the speed of light!

image

Black Widow Pulsars

Black widows and redbacks are species of spiders with a reputation for devouring their partners. Astronomers have discovered two types of star systems that behave in a similar way. Sometimes when a star explodes as a supernova, it collapses back into a rapidly spinning, incredibly dense star called a pulsar. If there’s a lighter star nearby, it can get stuck in a close orbit with the pulsar, which blasts it with gamma rays, magnetic fields and intense winds of energetic particles. All these combine to blow clouds of material off the low-mass star. Eventually, the pulsar can eat away at its companion entirely.

image

Dark Matter

What’s scarier than a good unsolved mystery? Dark matter is a little-understood substance that makes up most of the matter in the universe. The stuff that we can see — stars, people, haunted houses, candy — is made up of normal matter. But our surveys of the cosmos tell us there’s not enough normal matter to keep things working the way they do. There must be another type of matter out there holding everything together. One of Fermi’s jobs is to help scientists narrow down the search for dark matter. Last year, researchers noticed that most of the gamma rays coming from the Andromeda galaxy are confined to its center instead of being spread throughout. One possible explanation is that accumulated dark matter at the center of the galaxy is emitting gamma rays!

image

Fermi has helped us learn a lot about the gamma-ray universe over the last 10 years. Learn more about its accomplishments and the other mysteries it’s working to solve. What other surprises are waiting out among the stars?

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
6 years ago

Gamma-ray Bursts: Black Hole Birth Announcements

Gamma-ray bursts are the brightest, most violent explosions in the universe, but they can be surprisingly tricky to detect. Our eyes can't see them because they are tuned to just a limited portion of the types of light that exist, but thanks to technology, we can even see the highest-energy form of light in the cosmos — gamma rays.

So how did we discover gamma-ray bursts? 

Accidentally!

image

We didn’t actually develop gamma-ray detectors to peer at the universe — we were keeping an eye on our neighbors! During the Cold War, the United States and the former Soviet Union both signed the Nuclear Test Ban Treaty of 1963 that stated neither nation would test nuclear weapons in space. Just one week later, the US launched the first Vela satellite to ensure the treaty wasn’t being violated. What they saw instead were gamma-ray events happening out in the cosmos!

image

Things Going Bump in the Cosmos

Each of these gamma-ray events, dubbed “gamma-ray bursts” or GRBs, lasted such a short time that information was very difficult to gather. For decades their origins, locations and causes remained a cosmic mystery, but in recent years we’ve been able to figure out a lot about GRBs. They come in two flavors: short-duration (less than two seconds) and long-duration (two seconds or more). Short and long bursts seem to be caused by different cosmic events, but the end result is thought to be the birth of a black hole.

image

Short GRBs are created by binary neutron star mergers. Neutron stars are the superdense leftover cores of really massive stars that have gone supernova. When two of them crash together (long after they’ve gone supernova) the collision releases a spectacular amount of energy before producing a black hole. Astronomers suspect something similar may occur in a merger between a neutron star and an already-existing black hole.

image

Long GRBs account for most of the bursts we see and can be created when an extremely massive star goes supernova and launches jets of material at nearly the speed of light (though not every supernova will produce a GRB). They can last just a few seconds or several minutes, though some extremely long GRBs have been known to last for hours!

Gamma-ray Bursts: Black Hole Birth Announcements

A Gamma-Ray Burst a Day Sends Waves of Light Our Way!

Our Fermi Gamma-ray Space Telescope detects a GRB nearly every day, but there are actually many more happening — we just can’t see them! In a GRB, the gamma rays are shot out in a narrow beam. We have to be lined up just right in order to detect them, because not all bursts are beamed toward us — when we see one it's because we're looking right down the barrel of the gamma-ray gun. Scientists estimate that there are at least 50 times more GRBs happening each day than we detect!

image

So what’s left after a GRB — just a solitary black hole? Since GRBs usually last only a matter of seconds, it’s very difficult to study them in-depth. Fortunately, each one leaves an afterglow that can last for hours or even years in extreme cases. Afterglows are created when the GRB jets run into material surrounding the star. Because that material slows the jets down, we see lower-energy light, like X-rays and radio waves, that can take a while to fade. Afterglows are so important in helping us understand more about GRBs that our Neil Gehrels Swift Observatory was specifically designed to study them!

image

Last fall, we had the opportunity to learn even more from a gamma-ray burst than usual! From 130 million light-years away, Fermi witnessed a pair of neutron stars collide, creating a spectacular short GRB. What made this burst extra special was the fact that ground-based gravitational wave detectors LIGO and Virgo caught the same event, linking light and gravitational waves to the same source for the first time ever!

image

For over 10 years now, Fermi has been exploring the gamma-ray universe. Thanks to Fermi, scientists are learning more about the fundamental physics of the cosmos, from dark matter to the nature of space-time and beyond. Discover more about how we’ll be celebrating Fermi’s achievements all year!

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
6 years ago

Pick Your Favorite Findings From Fermi’s First Decade

The Fermi Gamma-ray Space Telescope has been observing some of the most extreme objects and events in the universe — from supermassive black holes to merging neutron stars and thunderstorms — for 10 years. Fermi studies the cosmos using gamma rays, the highest-energy form of light, and has discovered thousands of new phenomena for scientists.

Here are a few of our favorite Fermi discoveries, pick your favorite in the first round of our “Fermi Science Playoff.” 

Colliding Neutron Stars

image

In 2017, Fermi detected a gamma ray burst at nearly the same moment ground observatories detected gravitational waves from two merging neutron stars. This was the first time light and ripples in space-time were detected from the same source.

The Sun and Moon in Gamma Rays

image

In 2016, Fermi showed the Moon is brighter in gamma rays than the Sun. Because the Moon doesn’t have a magnetic field, the surface is constantly pelted from all directions by cosmic rays. These produce gamma rays when they run into other particles, causing a full-Moon gamma-ray glow.

Record Rare from a Blazar

image

The supermassive black hole at the center of the galaxy 3C 279 weighs a billion times the mass of our Sun. In June 2015, this blazar became the brightest gamma-ray source in the sky due to a record-setting flare.

The First Gamma-Ray Pulsar in Another Galaxy

image

In 2015, for the first time, Fermi discovered a gamma-ray pulsar, a kind of rapidly spinning superdense star, in a galaxy outside our own. The object, located on the outskirts of the Tarantula Nebula, also set the record for the most luminous gamma-ray pulsar we’ve seen so far.

A Gamma-Ray Cycle in Another Galaxy

image

Many galaxies, including our own, have black holes at their centers. In active galaxies, dust and gas fall into and “feed” the black hole, releasing light and heat. In 2015 for the first time, scientists using Fermi data found hints that a galaxy called PG 1553+113 has a years-long gamma-ray emission cycle. They’re not sure what causes this cycle, but one exciting possibility is that the galaxy has a second supermassive black hole that causes periodic changes in what the first is eating.

Gamma Rays from Novae

image

A nova is a fairly common, short-lived kind of explosion on the surface of a white dwarf, a type of compact star not much larger than Earth. In 2014, Fermi observed several novae and found that they almost always produce gamma-rays, giving scientists a new type of source to explore further with the telescope.

A Record-Setting Cosmic Blast

image

Gamma-ray bursts are the most luminous explosions in the universe. In 2013, Fermi spotted the brightest burst it’s seen so far in the constellation Leo. In the first three seconds alone, the burst, called GRB 130427A, was brighter than any other burst seen before it. This record has yet to be shattered.

Cosmic Rays from Supernova Leftovers

image

Cosmic rays are particles that travel across the cosmos at nearly the speed of light. They are hard to track back to their source because they veer off course every time they encounter a magnetic field. In 2013, Fermi showed that these particles reach their incredible speed in the shockwaves of supernova remains — a theory proposed in 1949 by the satellite’s namesake, the Italian-American physicist Enrico Fermi.

Discovery of a Transformer Pulsar

image

In 2013, the pulsar in a binary star system called AY Sextanis switched from radio emissions to high-energy gamma rays. Scientists think the change reflects erratic interaction between the two stars in the binary.

Gamma-Ray Measurement of a Gravitational Lens

image

A gravitational lens is a kind of natural cosmic telescope that occurs when a massive object in space bends and amplifies light from another, more distant object. In 2012, Fermi used gamma rays to observe a spiral galaxy 4.03 billion light-years away bending light coming from a source 4.35 billion light-years away.

New Limits on Dark Matter

image

We can directly observe only 20 percent of the matter in the universe. The rest is invisible to telescopes and is called dark matter — and we’re not quite sure what it is. In 2012, Fermi helped place new limits on the properties of dark matter, essentially narrowing the field of possible particles that can describe what dark matter is.

‘Superflares’ in the Crab Nebula

image

The Crab Nebula supernova remnant is one of the most-studied targets in the sky — we’ve been looking at it for almost a thousand years! In 2011, Fermi saw it erupt in a flare five times more powerful than any previously seen from the object. Scientists calculate the electrons in this eruption are 100 times more energetic than what we can achieve with particle accelerators on Earth.

Thunderstorms Hurling Antimatter into Space

image

Terrestrial gamma-ray flashes are created by thunderstorms. In 2011, Fermi scientists announced the satellite had detected beams of antimatter above thunderstorms, which they think are a byproduct of gamma-ray flashes.

Giant Gamma-Ray Bubbles in the Milky Way

image

Using data from Fermi in 2010, scientists discovered a pair of “bubbles” emerging from above and below the Milky Way. These enormous bubbles are half the length of the Milky Way and were probably created by our galaxy’s supermassive black hole only a few million years ago.

Hint of Starquakes in a Magnetar

image

Neutron stars have magnetic fields trillions of times stronger than Earth’s. Magnetars are neutron stars with magnetic fields 1,000 times stronger still. In 2009, Fermi saw a storm of gamma-ray bursts from a magnetar called SGR J1550-5418, which scientists think were related to seismic waves rippling across its surface.

A Dark Pulsar

image

We observe many pulsars using radio waves, visible light or X-rays. In 2008, Fermi found the first gamma-ray only pulsar in a supernova remnant called CTA 1. We think that the “beam” of gamma rays we see from CTA 1 is much wider than the beam of other types of light from that pulsar. Those other beams never sweep across our vision — only the gamma-rays.

image

Have a favorite Fermi discovery or want to learn more? Cast your vote in the first of four rounds of the Fermi Science Playoff to help rank Fermi’s findings. Or follow along as we celebrate the mission all year.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com.


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags