TumbleRead

Dive into your creative stream

Ganymede - Blog Posts

2 weeks ago
Greek Mythology Art Dump! (I Can't Draw Dogs So It Was Traced A Little But I'm Learning How To Draw Canines
Greek Mythology Art Dump! (I Can't Draw Dogs So It Was Traced A Little But I'm Learning How To Draw Canines
Greek Mythology Art Dump! (I Can't Draw Dogs So It Was Traced A Little But I'm Learning How To Draw Canines
Greek Mythology Art Dump! (I Can't Draw Dogs So It Was Traced A Little But I'm Learning How To Draw Canines
Drawing of thetis, the water nymph and mother of Greek hero achilles

Greek mythology art dump! (I can't draw dogs so it was traced a little but I'm learning how to draw canines wanna put that out there so I don't mislead but everything else is all drawn by me) and credit to @kyleesarthell for some of my inspo on ganymede's jewelry and hair kinda!

→Commission info←


Tags
7 years ago

Magnetospheres: How Do They Work?

The sun, Earth, and many other planets are surrounded by giant magnetic bubbles.

image

Space may seem empty, but it’s actually a dynamic place, dominated by invisible forces, including those created by magnetic fields.  Magnetospheres – the areas around planets and stars dominated by their magnetic fields – are found throughout our solar system. They deflect high-energy, charged particles called cosmic rays that are mostly spewed out by the sun, but can also come from interstellar space. Along with atmospheres, they help protect the planets’ surfaces from this harmful radiation.

It’s possible that Earth’s protective magnetosphere was essential for the development of conditions friendly to life, so finding magnetospheres around other planets is a big step toward determining if they could support life.

But not all magnetospheres are created equal – even in our own backyard, not all planets in our solar system have a magnetic field, and the ones we have observed are all surprisingly different.

image

Earth’s magnetosphere is created by the constantly moving molten metal inside Earth. This invisible “force field” around our planet has an ice cream cone-like shape, with a rounded front and a long, trailing tail that faces away from the sun. The magnetosphere is shaped that way because of the constant pressure from the solar wind and magnetic fields on the sun-facing side.

image

Earth’s magnetosphere deflects most charged particles away from our planet – but some do become trapped in the magnetic field and create auroras when they rain down into the atmosphere.

image

We have several missions that study Earth’s magnetosphere – including the Magnetospheric Multiscale mission, Van Allen Probes, and Time History of Events and Macroscale Interactions during Substorms (also known as THEMIS) – along with a host of other satellites that study other aspects of the sun-Earth connection.

image
image

Mercury, with a substantial iron-rich core, has a magnetic field that is only about 1% as strong as Earth’s. It is thought that the planet’s magnetosphere is stifled by the intense solar wind, limiting its strength, although even without this effect, it still would not be as strong as Earth’s. The MESSENGER satellite orbited Mercury from 2011 to 2015, helping us understand our tiny terrestrial neighbor.

image
image

After the sun, Jupiter has by far the biggest magnetosphere in our solar system – it stretches about 12 million miles from east to west, almost 15 times the width of the sun. (Earth’s, on the other hand, could easily fit inside the sun.) Jupiter does not have a molten metal core like Earth; instead, its magnetic field is created by a core of compressed liquid metallic hydrogen.

image

One of Jupiter’s moons, Io, has intense volcanic activity that spews particles into Jupiter’s magnetosphere. These particles create intense radiation belts and the large auroras around Jupiter’s poles.

image

Ganymede, Jupiter’s largest moon, also has its own magnetic field and magnetosphere – making it the only moon with one. Its weak field, nestled in Jupiter’s enormous shell, scarcely ruffles the planet’s magnetic field.

Our Juno mission orbits inside the Jovian magnetosphere sending back observations so we can better understand this region. Previous observations have been received from Pioneers 10 and 11, Voyagers 1 and 2, Ulysses, Galileo and Cassini in their flybys and orbits around Jupiter.

image

Saturn’s moon Enceladus transforms the shape of its magnetosphere. Active geysers on the moon’s south pole eject oxygen and water molecules into the space around the planet. These particles, much like Io’s volcanic emissions at Jupiter, generate the auroras around the planet’s poles. Our Cassini mission studies Saturn’s magnetic field and auroras, as well as its moon Enceladus.

image
image

Uranus’ magnetosphere wasn't discovered until 1986 when data from Voyager 2’s flyby revealed weak, variable radio emissions. Uranus’ magnetic field and rotation axis are out of alignment by 59 degrees, unlike Earth’s, whose magnetic field and rotation axis differ by only 11 degrees. On top of that, the magnetic field axis does not go through the center of the planet, so the strength of the magnetic field varies dramatically across the surface. This misalignment also means that Uranus’ magnetotail – the part of the magnetosphere that trails away from the sun – is twisted into a long corkscrew.

image
image

Neptune’s magnetosphere is also tilted from its rotation axis, but only by 47. Just like on Uranus, Neptune’s magnetic field strength varies across the planet. This also means that auroras can be seen away from the planet’s poles – not just at high latitudes, like on Earth, Jupiter and Saturn.

image

Does Every Planet Have a Magnetosphere?

Neither Venus nor Mars have global magnetic fields, although the interaction of the solar wind with their atmospheres does produce what scientists call an “induced magnetosphere.” Around these planets, the atmosphere deflects the solar wind particles, causing the solar wind’s magnetic field to wrap around the planet in a shape similar to Earth’s magnetosphere.

image

What About Beyond Our Solar System?

Outside of our solar system, auroras, which indicate the presence of a magnetosphere, have been spotted on brown dwarfs – objects that are bigger than planets but smaller than stars.

There’s also evidence to suggest that some giant exoplanets have magnetospheres. As scientists now believe that Earth’s protective magnetosphere was essential for the development of conditions friendly to life, finding magnetospheres around exoplanets is a big step in finding habitable worlds.  

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
8 years ago

Solar System: Things to Know This Week

Our solar system is a jewel box filled with a glittering variety of beautiful worlds--and not all of them are planets. This week, we present our solar system's most marvelous moons.

image

1. Weird Weather: Titan

Saturn's hazy moon Titan is larger than Mercury, but its size is not the only way it's like a planet. Titan has a thick atmosphere, complete with its own "water cycle" -- except that it's way too cold on Titan for liquid water. Instead, rains of liquid hydrocarbons like ethane and methane fall onto icy mountains, run into rivers, and gather into great seas. Our Cassini spacecraft mapped the methane seas with radar, and its cameras even caught a glimpse of sunlight reflecting off the seas' surface. Learn more about Titan: saturn.jpl.nasa.gov/science/titan/

image

2. Icy Giant: Ganymede

Jupiter's moon Ganymede is the largest in the solar system. It's bigger than Mercury and Pluto, and three-quarters the size of Mars. It's also the only moon known to have its own magnetic field. Details: solarsystem.nasa.gov/planets/ganymede/indepth

image

3. Retrograde Rebel: Triton

Triton is Neptune's largest moon, and the only one in the solar system to orbit in the opposite direction of its planet's rotation, a retrograde orbit. It may have been captured from the Kuiper Belt, where Pluto orbits. Despite the frigid temperatures there, Triton has cryovolcanic activity -- frozen nitrogen sometimes sublimates directly to gas and erupts from geysers on the surface. More on Triton: solarsystem.nasa.gov/planets/triton/indepth

image

4. Cold Faithful: Enceladus

The most famous geysers in our solar system (outside of those on Earth) belong to Saturn's moon Enceladus. It's a small, icy body, but Cassini revealed this world to be one of the solar system's most scientifically interesting destinations. Geyser-like jets spew water vapor and ice particles from an underground ocean beneath the icy crust of Enceladus. With its global ocean, unique chemistry and internal heat, Enceladus has become a promising lead in our search for worlds where life could exist. Get the details: saturn.jpl.nasa.gov/science/enceladus/

image

5. Volcano World: Io

Jupiter's moon Io is subjected to tremendous gravitational forces that cause its surface to bulge up and down by as much as 330 feet (100 m). The result? Io is the most volcanically active body in the Solar System, with hundreds of volcanoes, some erupting lava fountains dozens of miles high. More on Io’s volcanoes: solarsystem.nasa.gov/planets/io/indepth

image

6. Yin and Yang Moon: Iapetus

When Giovanni Cassini discovered Iapetus in 1671, he observed that one side of this moon of Saturn was bright and the other dark. He noted that he could only see Iapetus on the west side of Saturn, and correctly concluded that Iapetus had one side much darker than the other side. Why? Three centuries later, the Cassini spacecraft solved the puzzle. Dark, reddish dust in Iapetus's orbital path is swept up and lands on the leading face of the moon. The dark areas absorb energy and become warmer, while uncontaminated areas remain cooler. Learn more: saturn.jpl.nasa.gov/news/2892/cassini-10-years-at-saturn-top-10-discoveries/#nine

image

7. A Double World: Charon and Pluto

At half the size of Pluto, Charon is the largest of Pluto's moons and the largest known satellite relative to its parent body. The moon is so big compared to Pluto that Pluto and Charon are sometimes referred to as a double planet system. Charon's orbit around Pluto takes 6.4 Earth days, and one Pluto rotation (a Pluto day) takes 6.4 Earth days. So from Pluto's point of view Charon neither rises nor sets, but hovers over the same spot on Pluto's surface, and the same side of Charon always faces Pluto. Get the details: www.nasa.gov/feature/pluto-and-charon-new-horizons-dynamic-duo

image

8. "Death Star" Moon: Mimas

Saturn's moon Mimas has one feature that draws more attention than any other: the crater Herschel, which formed in an impact that nearly shattered the little world. Herschel gives Mimas a distinctive look that prompts an oft-repeated joke. But, yes, it's a moon. More: olarsystem.nasa.gov/planets/mimas

image

9. Don't Be Afraid, It's Just Phobos

In mythology, Mars is a the god of war, so it's fitting that its two small moons are called Phobos, "fear," and Deimos, "terror." Our Mars Reconnaissance Orbiter caught this look at Phobos, which is roughly 17 miles (27 km) wide. In recent years, NASA scientists have come to think that Phobos will be torn apart by its host planet's gravity. Details: www.nasa.gov/feature/goddard/phobos-is-falling-apart

Learn more about Phobos: solarsystem.nasa.gov/planets/phobos/indepth

image

10. The Moon We Know Best

Although decades have passed since astronauts last set foot on its surface, Earth's moon is far from abandoned. Several robotic missions have continued the exploration. For example, this stunning view of the moon's famous Tycho crater was captured by our Lunar Reconnaissance Orbiter, which continues to map the surface in fine detail today. More: www.lroc.asu.edu/posts/902

Discover more lists of 10 things to know about our solar system HERE.

Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com


Tags
Loading...
End of content
No more pages to load
Explore Tumblr Blog
Search Through Tumblr Tags